7,468 research outputs found
Standard Model Mass Spectrum in Inflationary Universe
We work out the Standard Model (SM) mass spectrum during inflation with
quantum corrections, and explore its observable consequences in the squeezed
limit of non-Gaussianity. Both non-Higgs and Higgs inflation models are studied
in detail. We also illustrate how some inflationary loop diagrams can be
computed neatly by Wick-rotating the inflation background to Euclidean
signature and by dimensional regularization.Comment: 62 pages, JHEP accepted versio
Approximate Capacities of Two-Dimensional Codes by Spatial Mixing
We apply several state-of-the-art techniques developed in recent advances of
counting algorithms and statistical physics to study the spatial mixing
property of the two-dimensional codes arising from local hard (independent set)
constraints, including: hard-square, hard-hexagon, read/write isolated memory
(RWIM), and non-attacking kings (NAK). For these constraints, the strong
spatial mixing would imply the existence of polynomial-time approximation
scheme (PTAS) for computing the capacity. It was previously known for the
hard-square constraint the existence of strong spatial mixing and PTAS. We show
the existence of strong spatial mixing for hard-hexagon and RWIM constraints by
establishing the strong spatial mixing along self-avoiding walks, and
consequently we give PTAS for computing the capacities of these codes. We also
show that for the NAK constraint, the strong spatial mixing does not hold along
self-avoiding walks
Neutrino Signatures in Primordial Non-Gaussianities
We study the cosmological collider phenomenology of neutrinos in an effective
field theory. The mass spectrum of neutrinos and their characteristic
oscillatory signatures in the squeezed limit bispectrum are computed. Both
dS-covariant and slow-roll corrections are considered, so is the scenario of
electroweak symmetry breaking during inflation. Interestingly, we show that the
slow-roll background of the inflaton provides a chemical potential for the
neutrino production. The chemical potential greatly amplifies the oscillatory
signal and makes the signal observably large for heavy neutrinos without the
need of fine tuning.Comment: 31 pages, JHEP accepted versio
- …