1,246 research outputs found

    Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions

    Get PDF
    Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction --- a phenomenon known as the Chiral Magnetic Effect (CME). The quark-gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHC for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from both CME and background effects in one and same framework. The implications for the search of CME are discussed.Comment: 5 pages, 3 figures, Published version in Phys. Lett.

    Quantifying the Chiral Magnetic Effect from Anomalous-Viscous Fluid Dynamics

    Full text link
    In this contribution we report a recently developed Anomalous-Viscous Fluid Dynamics (AVFD) framework, which simulates the evolution of fermion currents in QGP on top of the bulk expansion from data-validated VISHNU hydrodynamics. With reasonable estimates of initial conditions and magnetic field lifetime, the predicted CME signal is quantitatively consistent with change separation measurements in 200GeV Au-Au collisions at RHIC. We further develop the event-by-event AVFD simulations that allow direct evaluation of two-particle correlations arising from CME signal as well as the non-CME backgrounds. Finally we report predictions from AVFD simulations for the upcoming isobaric (Ru-Ru v.s. Zr-Zr ) collisions that could provide the critical test of the CME in heavy ion collisions.Comment: Contribution to the Proceedings of the XXVIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2017), Feb 5-11, Chicago, U.S.A. 4 pages, 6 figure

    The influence of adatom diffusion on the formation of skyrmion lattice in sub-monolayer Fe on Ir(111)

    Full text link
    Room temperature grown Fe monolayer (ML) on the Ir(111) single crystal substrate has attracted great research interests as nano-skyrmion lattice can form under proper growth conditions. The formation of the nanoscale skyrmion, however, appears to be greatly affected by the diffusion length of the Fe adatoms on the Ir(111) surface. We made this observation by employing spin-polarized scanning tunneling microscopy to study skyrmion formation upon systematically changing the impurity density on the substrate surface prior to Fe deposition. Since the substrate surface impurities serve as pinning centers for Fe adatoms, the eventual size and shape of the Fe islands exhibit a direct correlation with the impurity density, which in turn determines whether skyrmion can be formed. Our observation indicates that skyrmion only forms when the impurity density is below 0.006/nm2, i.e., 12 nm averaged spacing between the neighboring defects. We verify the significance of Fe diffusion length by growing Fe on clean Ir(111) substrate at low temperature of 30 K, where no skyrmion was observed to form. Our findings signify the importance of diffusion of Fe atoms on the Ir(111) substrate, which affects the size, shape and lattice perfection of the Fe islands and thus the formation of skyrmion lattice

    Creation of nano-skyrmion lattice in Fe/Ir(111) system using voltage pulse

    Full text link
    Magnetic ultrathin films grown on heavy metal substrates often exhibit rich spin structures due to the competition between various magnetic interactions such as Heisenberg exchange, Dzyaloshinskii-Moriya interaction and higher-order spin interactions. Here we employ spin-polarized scanning tunneling microscopy to study magnetic nano-skyrmion phase in Fe monolayer grown on Ir(111) substrate. Our observations show that the formation of nano-skyrmion lattice in the Fe/Ir(111) system depends sensitively on the growth conditions and various non-skyrmion spin states can be formed. Remarkably, the application of voltage pulses between the tip and the sample can trigger a non-skyrmion to skyrmion phase transition. The fact that nano-skyrmions can be created using voltage pulse indicates that the balance between the competing magnetic interactions can be affected by an external electric field, which is highly useful to design skyrmion-based spintronic devices with low energy consumption

    1909 Taipei Earthquake Ground Motion Simulation

    Full text link
    The 1909 Taipei earthquake (M 7.3) occurred beneath the Taipei metropolitan area (TMA) causing substantial damage according to the historical literature. According to the hypocenter relocation and tectonic implications provided in a previous study, we simulated ground motions within the TMA using a hybrid simulation method involving the spectral-element method (SEM) and the empirical Green’s function method (EGFM). We used the SEM for simulating low-frequency components and the EGFM for simulating high-frequency components. These high and low frequency components were subsequently combined. For the EGFM we used the records from a recent ML 4.9 earthquake (11 October 2013, depth = 143.8 km) in the Taipei area as the empirical Green’s function. According to the historical literature, the observed PGA (peak ground acceleration) values are 59.2 and 67.0 gal at ancient stations TAP and KEE, with periods of 1.21 and 1.34 s, respectively. By comparing the simulated PGA values at modern stations TAPB and WFSB to the historical documented ones for 12 different models, our result suggests that the 1909 Taipei earthquake was an event with a magnitude of about Mw 7.3 and stress drop of approximately 30 bars, or a smaller equivalent magnitude between Mw 6.8 - 7.3 but with much higher average stress drop of more than 100 bars. For a deep event beneath TMA a larger vertical P-wave motion and longer period shaking wave, as addressed in the historical literature, might be expected with prolonged shaking as found in the simulation. A seismic hazard assessment is necessary for metropolitan Taipei to better understand the long period shaking from deep subduction zone intra plate events

    Quantitative pinch stimulator for exploring evoked nociceptive responses: A pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A mechanical noxious stimulator is useful for studies of pain, both for clinic and basic research. We propose to use a pinch stimulator that can not only generate a quantitative, reproducible noxious pinch but also simultaneously provide a synchronous external trigger signal, which is essential for acquisition of evoked potentials.</p> <p>Methods</p> <p>For ethical considerations, audible and visual aids were incorporated so that pinch force could be regulated within a predetermined level. Reproducibility of the nociceptive responses evoked by this device was validated. The device was constructed with a simple circuit, and the element build-in was delicately selected for the minimum required to produce evoked potentials.</p> <p>Results</p> <p>The magnitude of the force output is linearly proportional to the volts produced by the device (i.e., during the pinch). Increases in force correspond to increases in the number of action potentials induced.</p> <p>Conclusions</p> <p>This device may be useful for studying the mechanisms of nociceptive signal processing in the brain through application of reproducible, noxious pinch stimuli.</p

    Deep ocean mineral supplementation enhances the cerebral hemodynamic response during exercise and decreases inflammation postexercise in men at two age levels.

    Get PDF
    Background: Previous studies have consistently shown that oral supplementation of deep ocean minerals (DOM) improves vascular function in animals and enhances muscle power output in exercising humans. Purpose: To examine the effects of DOM supplementation on the cerebral hemodynamic response during physical exertion in young and middle-aged men. Design: Double-blind placebo-controlled crossover studies were conducted in young (N = 12, aged 21.2 ± 0.4 years) and middle-aged men (N = 9, aged 46.8 ± 1.4 years). The counter-balanced trials of DOM and Placebo were separated by a 2-week washout period. DOM and Placebo were orally supplemented in drinks before, during, and after cycling exercise. DOM comprises desalinated minerals and trace elements from seawater collected ~618 m below the earth's surface. Methods: Cerebral hemodynamic response (tissue hemoglobin) was measured during cycling at 75% VO2max using near infrared spectroscopy (NIRS). Results: Cycling time to exhaustion at 75% VO2max and the associated plasma lactate response were similar between the Placebo and DOM trials for both age groups. In contrast, DOM significantly elevated cerebral hemoglobin levels in young men and, to a greater extent, in middle-aged men compared with Placebo. An increased neutrophil to lymphocyte ratio (NLR) was observed in middle-aged men, 2 h after exhaustive cycling, but was attenuated by DOM. Conclusion: Our data suggest that minerals and trace elements from deep oceans possess great promise in developing supplements to increase the cerebral hemodynamic response against a physical challenge and during post-exercise recovery for middle-aged men.This work was supported by Pacific Deep Ocean Biotech (Taipei,Taiwan) and University of Taipei (Taipei, Taiwan). The funding sponsors had no role in the design of the study; in the of the manuscript, and in the decision to publish the results. We declare that the results of the study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation
    • …
    corecore