258 research outputs found
Prospect for room temperature tunneling anisotropic magnetoresistance effect: density of states anisotropies in CoPt systems
Tunneling anisotropic magnetoresistance (TAMR) effect, discovered recently in
(Ga,Mn)As ferromagnetic semiconductors, arises from spin-orbit coupling and
reflects the dependence of the tunneling density of states in a ferromagnetic
layer on orientation of the magnetic moment. Based on ab initio relativistic
calculations of the anisotropy in the density of states we predict sizable TAMR
effects in room-temperature metallic ferromagnets. This opens prospect for new
spintronic devices with a simpler geometry as these do not require
antiferromagnetically coupled contacts on either side of the tunnel junction.
We focus on several model systems ranging from simple hcp-Co to more complex
ferromagnetic structures with enhanced spin-orbit coupling, namely bulk and
thin film L1-CoPt ordered alloys and a monatomic-Co chain at a Pt surface
step edge. Reliability of the predicted density of states anisotropies is
confirmed by comparing quantitatively our ab initio results for the
magnetocrystalline anisotropies in these systems with experimental data.Comment: 4 pages, 2 figure
Application of Nanoparticles with the Structure of the Metal Nucleus - Carbon Enclosure in Biology and Medicine
The study was carried out with the financial support of the Russian Foundation for Basic Research in the framework of the research project No. 18-33-00785
Dimerization and low-dimensional magnetism in nanocrystalline TiO2 semiconductors doped by Fe and Co
The report is devoted to an analysis of the structural and magnetic state of the nanocrystalline diluted magnetic semiconductors based on TiO2 doped with Fe and Co atoms. Structural and magnetic characterization of samples was carried out using X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR) spectroscopy, SQUID magnetometry, and the density functional theory (DFT) calculations. Analysis of the experimental data suggests the presence of non-interacting paramagnetic Fe3+ and Co2+ ions in the high-spin state and negative exchange interactions between them. The important conclusions is that the distribution of dopants in the TiO2 matrix, even at low concentrations of 3d-metal dopant (less than one percent), is not random, but the 3d ions localization and dimerization is observed both on the surface and in the nanoparticles core. Thus, in the paper the quantum mechanical model for describing the magnetic properties of TiO2:(Fe, Co) was suggested. The model operates only with two parameters: paramagnetic contribution of non-interacting 3d-ions and dimers having different exchange interactions between 3d magnetic carriers. © Published under licence by IOP Publishing Ltd
Irreversibility of the magnetic state of Tm1 xTbxCo2 revealed by specific heat, electrical resistivity, and neutron diffraction measurements
The substitution of Tb for Tm in the Laves phase compound Tm Co2 leads to appearance of a magnetic moment on the Co atoms through the metamagnetic transition in the itinerant d -electron subsystem and gives rise to long-range ferrimagnetic order in Tm1-x Tbx Co2 at x≥0.15. The magnetic state of the compound Tm0.9 Tb0.1 Co2, i.e., just below the critical Tb concentration, is characterized by the presence of large regions with short-range magnetic order and localized spin fluctuations (LSFs) induced in the Co 3d -electron subsystem by the fluctuating f-d exchange due to the Tm-Tb substitution. The peculiar magnetic state of this compound is strongly influenced by an external magnetic field which produces a first-order magnetic phase transition to a long-range ferrimagnetic state with the magnetic moment on the Co atoms up to (0.7-0.8) μB. This field-induced transition in Tm0.9 Tb0.1 Co2 is found to be irreversible. It is accompanied by a giant and irreversible reduction of the electrical resistivity (Δρ ρ∼-45%), specific heat (by about 3.7 times at 2 K), and intensity of magnetic neutron scattering. Such behavior is associated with the field-induced metamagnetic transition in the itinerant d -electron subsystem mediated by the f-d exchange. Significantly enhanced values of the residual resistivity and the coefficient γ of the T -linear contribution to the specific heat in the compound with x=0.1 as well as their unusual behavior with temperature and under application of the magnetic field is ascribed to the presence of LSF. © 2006 The American Physical Society.This work was partly performed at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute (PSI), Villigen, Switzerland. This work was supported by the Russian Foundation for Basic Research (Grant No. 04-02-96060) and by the Swiss National Science Foundation (SCOPES Project No. IB7420-110849)
Atomic, electronic and magnetic structure of graphene/iron and nickel interfaces: theory and experiment
First-principles calculations of the effect of carbon coverage on the atomic,
electronic and magnetic structure of nickel and iron substrates demonstrate
insignificant changes in the interatomic distances and magnetic moments on the
atoms of the metallic substrates. The coverage of the iron surface by mono- and
few-layer graphene induces significant changes in the orbital occupancies and
exchange interactions between the layers in contrast to the case of a nickel
substrate for which changes in the orbital ordering and exchange interactions
are much smaller. Experimental measurements demonstrate the presence of
ferromagnetic fcc-iron in Fe@C nanoparticles and the superparamagnetic behavior
of Ni@C nanoparticles.Comment: 19 pages, 7 figures, accepted to RSC Advance
- …