409 research outputs found

    A new era in the management of type 2 diabetes: Is cardioprotection at long last a reality?

    Get PDF
    The EMPA-REG OUTCOME and the LEADER trials have revealed a new era in the management of type 2 diabetes. The SGLT2 inhibitor empagliflozin demonstrated a lower rate of the primary composite outcome of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke compared to placebo. Liraglutide, a GLP-1 analogue, succeeded to demonstrate reduction on a composite outcome including first occurrence of cardiovascular death, nonfatal myocardial infarction or non-fatal stroke. These two medications act through different mechanisms and has consequently shown different patterns of cardiovascular benefit. In one hand, empagliflozin showed an earlier effect compared to those observed using liraglutide. On the other hand, the difference between empagliflozin and placebo was driven by a significant reduction in death from cardiovascular causes, with and striking disconnect showing no significant between-group difference in the risk of myocardial infarction or stroke. In contrast, liraglutide reduced consistently all components of the composite endpoint. Based on the different temporal pattern of achieving clinical benefit one might flirt with the idea that liraglutide seems to provide a chronic “protection” that better fits in a longer metabolic effect with an impact in the progression of atherosclerosis, whilst empagliflozin provides an acute effect compatible with an immediate hemodynamic action. After years going from “bench to bedside” in order to discover the holy grail of cardioprotection, these 2 new studies suggest that we may have reached this state and it is time to go from “bed back to bench side” to understand the mechanisms of this potential paradigm shift

    Cardioprotection: The Disconnect Between Bench and Bedside

    Get PDF

    Exosomes and cardioprotection - A critical analysis

    Get PDF
    Exosomes are nano-sized vesicles released by numerous cell types that appear to have diverse beneficial effects on the injured heart. Studies using exosomes from stem cells or from the blood have indicated that they are able to protect the heart both in models of acute ischaemia and reperfusion, and during chronic ischaemia. In addition to decreasing initial infarct size, they are able to stimulate angiogenesis, reduce fibrosis and remodelling, alter immune cell function and improve long-term cardiac contractile function. However, since the technology and techniques used for the study of exosomes is relatively immature and continually evolving, there remain many important caveats to the interpretation of studies. This review presents a critical analysis of the field of exosomes and cardioprotection. We analyse the effects of exosomes from all types of stem cells investigated to date, summarize the major effects observed and their potential mechanism, and offer our perspective on the major outstanding issues

    The pleiotropic effects of metformin: time for prospective studies

    Get PDF
    The global prevalence of diabetes has risen to epidemic proportions and the trend is predicted to continue. The consequent burden of cardiovascular morbidity and mortality is a major public health concern and new treatments are required to mitigate the deleterious effects of cardiovascular disease in diabetic patients. Ischaemia-reperfusion injury is well known to exacerbate the harmful effects of acute myocardial infarction and subsequent therapeutic reperfusion, and several mechanical and pharmacological approaches to mitigating this injury have been investigated. Metformin, which is cheap, relatively safe and widely used in type 2 diabetes, is one such pharmacotherapy with considerable pre-clinical evidence for cardioprotective utility beyond its glucose-lowering effect. However, despite convincing basic evidence its translation to clinical application has largely been limited to studies of cardiovascular risk. There are several barriers to prospective randomized assessment in the context of acute myocardial infarction, not least the accessibility and already widespread use of metformin among patients with type 2 diabetes at high risk of cardiovascular events. In the place of class 1 evidence, well-designed prospective cohort studies of the potential pleiotropic utility of metformin in cardiovascular disease, and particularly its benefit in ischaemia-reperfusion injury, are needed. Given the availability of metformin worldwide, this is particularly true in low- and middle-income countries where the optimal therapy for acute myocardial infarction, primary percutaneous coronary intervention, may not be available, and instead patients are managed with thrombolysis. As this is less effective, metformin as an adjunct to thrombolysis (or PPCI) could represent an effective, cheap means of cardioprotection with global relevance

    Does remote ischaemic conditioning reduce inflammation? A focus on innate immunity and cytokine response

    Get PDF
    The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel therapies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective surgery are the most suitable clinical conditions in which to test this hypothesis

    Exosomes and Cardiovascular Protection

    Get PDF
    Most, if not all, cells of the cardiovascular system secrete small, lipid bilayer vesicles called exosomes. Despite technical challenges in their purification and analysis, exosomes from various sources have been shown to be powerfully cardioprotective. Indeed, it is possible that much of the so-called "paracrine" benefit in cardiovascular function obtained by stem cell therapy can be replicated by the injection of exosomes produced by stem cells. However, exosomes purified from plasma appear to be just as capable of activating cardioprotective pathways. We discuss the potential roles of endogenous exosomes in the cardiovascular system, how this is perturbed in cardiovascular disease, and evaluate their potential as therapeutic agents to protect the heart

    Mouse models of atherosclerosis and their suitability for the study of myocardial infarction

    Get PDF
    Atherosclerotic plaques impair vascular function and can lead to arterial obstruction and tissue ischaemia. Rupture of an atherosclerotic plaque within a coronary artery can result in an acute myocardial infarction, which is responsible for significant morbidity and mortality worldwide. Prompt reperfusion can salvage some of the ischaemic territory, but ischaemia and reperfusion (IR) still causes substantial injury and is, therefore, a therapeutic target for further infarct limitation. Numerous cardioprotective strategies have been identified that can limit IR injury in animal models, but none have yet been translated effectively to patients. This disconnect prompts an urgent re-examination of the experimental models used to study IR. Since coronary atherosclerosis is the most prevalent morbidity in this patient population, and impairs coronary vessel function, it is potentially a major confounder in cardioprotective studies. Surprisingly, most studies suggest that atherosclerosis does not have a major impact on cardioprotection in mouse models. However, a major limitation of atherosclerotic animal models is that the plaques usually manifest in the aorta and proximal great vessels, and rarely in the coronary vessels. In this review, we examine the commonly used mouse models of atherosclerosis and their effect on coronary artery function and infarct size. We conclude that none of the commonly used strains of mice are ideal for this purpose; however, more recently developed mouse models of atherosclerosis fulfil the requirement for coronary artery lesions, plaque rupture and lipoprotein patterns resembling the human profile, and may enable the identification of therapeutic interventions more applicable in the clinical setting

    The Role of Extracellular DNA and Histones in Ischaemia-Reperfusion Injury of the Myocardium

    Get PDF
    Despite an increase in the rates of survival in patients suffering myocardial infarction, as yet there is no therapy specifically targeting ischaemia and reperfusion injury of the myocardium. With a greater understanding of immune activation during infarction, more potential treatment targets are now being identified. The innate immune system is believed to play an important role in the myocardium after ischaemia-driven cardiomyocyte death. The release of intracellular contents including DNA into the extracellular space during necrosis and cell rupture is now believed to create a pro-inflammatory milieu which propagates the inflammatory process. DNA and DNA fragments have been shown to activate the innate immune system by acting as Danger-Associated Molecular Patterns (DAMPs), which act as ligands on toll-like receptors (TLRs). Stimulation of TLRs, in turn, can activate intracellular cell death pathways such as pyroptosis. Here, we review the role of DNA fragments during ischaemia and reperfusion, and assess their potential as a target in the quest to preserve cardiomyocyte viability following myocardial infarction
    • …
    corecore