49,495 research outputs found
Space Shuffle: A Scalable, Flexible, and High-Bandwidth Data Center Network
Data center applications require the network to be scalable and
bandwidth-rich. Current data center network architectures often use rigid
topologies to increase network bandwidth. A major limitation is that they can
hardly support incremental network growth. Recent work proposes to use random
interconnects to provide growth flexibility. However routing on a random
topology suffers from control and data plane scalability problems, because
routing decisions require global information and forwarding state cannot be
aggregated. In this paper we design a novel flexible data center network
architecture, Space Shuffle (S2), which applies greedy routing on multiple ring
spaces to achieve high-throughput, scalability, and flexibility. The proposed
greedy routing protocol of S2 effectively exploits the path diversity of
densely connected topologies and enables key-based routing. Extensive
experimental studies show that S2 provides high bisectional bandwidth and
throughput, near-optimal routing path lengths, extremely small forwarding
state, fairness among concurrent data flows, and resiliency to network
failures
Nanostructured Conductive Polymers for Advanced Energy Storage
Conductive polymers combine the attractive properties associated with conventional polymers and unique electronic properties of metals or semiconductors. Recently, nanostructured conductive polymers have aroused considerable research interest owing to their unique properties over their bulk counterparts, such as large surface areas and shortened pathways for charge/mass transport, which make them promising candidates for broad applications in energy conversion and storage, sensors, actuators, and biomedical devices. Numerous synthetic strategies have been developed to obtain various conductive polymer nanostructures, and high-performance devices based on these nanostructured conductive polymers have been realized. This Tutorial review describes the synthesis and characteristics of different conductive polymer nanostructures; presents the representative applications of nanostructured conductive polymers as active electrode materials for electrochemical capacitors and lithium-ion batteries and new perspectives of functional materials for next-generation high-energy batteries, meanwhile discusses the general design rules, advantages, and limitations of nanostructured conductive polymers in the energy storage field; and provides new insights into future directions.University of Texas at Austin3M Non-tenured Faculty awardWelch Foundation F-1861Materials Science and Engineerin
- …