76 research outputs found

    Lateral response of a layered material with interlayer friction

    Full text link
    We investigate the mechanical properties of a layered material with interlayer friction. We propose a model that contains lateral elasticity and interlayer friction to obtain the response function both in the Fourier and real spaces. By investigating how the internal deformation is laterally induced due to the applied surface displacement, we find that it is transmitted into the material with an apparent phase difference. We also obtain the effective complex modulus of the layered material and show that it exhibits an intermediate power-law behavior in the low-frequency regime. Our result can be used to estimate the internal deformation of layered materials that exist on various different scales

    Onsager's variational principle for nonreciprocal systems with odd elasticity

    Full text link
    Using Onsager's variational principle, we derive dynamical equations for a nonequilibrium active system with odd elasticity. The elimination of the extra variable that is coupled to the nonequilibrium driving force leads to the nonreciprocal set of equations for the material coordinates. The obtained nonreciprocal equations manifest the physical origin of the odd elastic constants that are proportional to the nonequilibrium force and the friction coefficients. Our approach offers a systematic and consistent way to derive nonreciprocal equations for active matter in which the time-reversal symmetry is broken

    Autonomous elastic microswimmer

    Full text link
    A model of an autonomous three-sphere microswimmer is proposed by implementing a coupling effect between the two natural lengths of an elastic microswimmer. Such a coupling mechanism is motivated by the previous models for synchronization phenomena in coupled oscillator systems. We numerically show that a microswimmer can acquire a nonzero steady state velocity and a finite phase difference between the oscillations in the natural lengths. These velocity and phase difference are almost independent of the initial phase difference. There is a finite range of the coupling parameter for which a microswimmer can have an autonomous directed motion. The stability of the phase difference is investigated both numerically and analytically in order to determine its bifurcation structure
    • …
    corecore