3 research outputs found
ES2Net: An Efficient Spectral-Spatial Network for Hyperspectral Image Change Detection
Hyperspectral image change detection (HSI-CD) aims to identify the
differences in bitemporal HSIs. To mitigate spectral redundancy and improve the
discriminativeness of changing features, some methods introduced band selection
technology to select bands conducive for CD. However, these methods are limited
by the inability to end-to-end training with the deep learning-based feature
extractor and lack considering the complex nonlinear relationship among bands.
In this paper, we propose an end-to-end efficient spectral-spatial change
detection network (ES2Net) to address these issues. Specifically, we devised a
learnable band selection module to automatically select bands conducive to CD.
It can be jointly optimized with a feature extraction network and capture the
complex nonlinear relationships among bands. Moreover, considering the large
spatial feature distribution differences among different bands, we design the
cluster-wise spatial attention mechanism that assigns a spatial attention
factor to each individual band to individually improve the feature
discriminativeness for each band. Experiments on three widely used HSI-CD
datasets demonstrate the effectiveness and superiority of this method compared
with other state-of-the-art methods