13,187 research outputs found
Ellsberg Paradox and Second-order Preference Theories on Ambiguity: Some New Experimental Evidence
We study the two-color problem by Ellsberg (1961) with the modification that the decision maker draws twice with replacement and a different color wins in each draw. The 50-50 risky urn turns out to have the highest risk conceivable among all prospects including the ambiguous one, while all feasible color distributions are mean-preserving spreads to one another. We show that the well-known second-order sophisticated theories like MEU, CEU, and REU as well as Savage’s first-order theory of SEU share the same predictions in our design, for any first-order risk attitude. Yet, we observe that substantial numbers of subjects violate the theory predictions even in this simple design
Ellsberg Paradox and Second-order Preference Theories on Ambiguity: Some New Experimental Evidence
We study the two-color problem by Ellsberg (1961) with the modification that the decision maker draws twice with replacement and a different color wins in each draw. The 50-50 risky urn turns out to have the highest risk conceivable among all prospects including the ambiguous one, while all feasible color distributions are mean-preserving spreads to one another. We show that the well-known second-order sophisticated theories like MEU, CEU, and REU as well as Savage’s first-order theory of SEU share the same predictions in our design, for any first-order risk attitude. Yet, we observe that substantial numbers of subjects violate the theory predictions even in this simple design.Ellsberg paradox, Ambiguity, Second-order risk, Second-order preference theory, Experiment
Galectin-12 in Cellular Differentiation, Apoptosis and Polarization.
Galectin-12 is a member of a family of mammalian lectins characterized by their affinity for β-galactosides and consensus amino acid sequences. The protein structure consists of a single polypeptide chain containing two carbohydrate-recognition domains joined by a linker region. Galectin-12 is predominantly expressed in adipose tissue, but is also detected in macrophages and other leukocytes. Downregulation of galectin-12 in mouse 3T3-L1 cells impairs their differentiation into adipocytes. Conversely, overexpression of galectin-12 in vitro induces cell cycle arrest in G1 and apoptosis. Upregulation of galectin-12 and initiation of G1 cell cycle arrest are associated with driving pre-adipocytes toward terminal differentiation. Galectin-12 deficiency increases insulin sensitivity and glucose tolerance in obese animals. Galectin-12 inhibits macrophage polarization to the M2 population, enhancing inflammation and decreasing insulin sensitivity in adipocytes. Galectin-12 also affects myeloid differentiation, which is associated with chemotherapy resistance. In addition to highlighting the above-mentioned aspects, this review also discusses the potential clinical applications of modulating the function of galectin-12
- …