105,889 research outputs found
Dynkin Game of Stochastic Differential Equations with Random Coefficients, and Associated Backward Stochastic Partial Differential Variational Inequality
A Dynkin game is considered for stochastic differential equations with random
coefficients. We first apply Qiu and Tang's maximum principle for backward
stochastic partial differential equations to generalize Krylov estimate for the
distribution of a Markov process to that of a non-Markov process, and establish
a generalized It\^o-Kunita-Wentzell's formula allowing the test function to be
a random field of It\^o's type which takes values in a suitable Sobolev space.
We then prove the verification theorem that the Nash equilibrium point and the
value of the Dynkin game are characterized by the strong solution of the
associated Hamilton-Jacobi-Bellman-Isaacs equation, which is currently a
backward stochastic partial differential variational inequality (BSPDVI, for
short) with two obstacles. We obtain the existence and uniqueness result and a
comparison theorem for strong solution of the BSPDVI. Moreover, we study the
monotonicity on the strong solution of the BSPDVI by the comparison theorem for
BSPDVI and define the free boundaries. Finally, we identify the counterparts
for an optimal stopping time problem as a special Dynkin game.Comment: 40 page
Distributed Estimation of Graph Spectrum
In this paper, we develop a two-stage distributed algorithm that enables
nodes in a graph to cooperatively estimate the spectrum of a matrix
associated with the graph, which includes the adjacency and Laplacian matrices
as special cases. In the first stage, the algorithm uses a discrete-time linear
iteration and the Cayley-Hamilton theorem to convert the problem into one of
solving a set of linear equations, where each equation is known to a node. In
the second stage, if the nodes happen to know that is cyclic, the algorithm
uses a Lyapunov approach to asymptotically solve the equations with an
exponential rate of convergence. If they do not know whether is cyclic, the
algorithm uses a random perturbation approach and a structural controllability
result to approximately solve the equations with an error that can be made
small. Finally, we provide simulation results that illustrate the algorithm.Comment: 15 pages, 2 figure
- …