1,164 research outputs found

    4-Benzyl-7-chloro-2H-1,4-benz­oxazin-3(4H)-one

    Get PDF
    In the title compound, C15H12ClNO2, the two benzene rings are nearly perpendicular to each other [dihedral angle = 89.99 (13)°]. The O atom of the six-membered heterocyclic ring is disordered over two sites in a ratio of 0.46 (4):0.54 (4) and is displaced from the mean plane formed by other five atoms, resulting an envelope conformation of the six-membered hetercycle ring

    A second ortho­rhom­bic polymorph of 2-(pyridin-4-ylmeth­oxy)phenol

    Get PDF
    The crystal structure of the title compound, C12H11NO2, represents a new ortho­rhom­bic polymorph II of the previously reported ortho­rhom­bic form I [Zhang et al. (2009 ▶) Acta Cryst. E65, o3160]. In polymorph II, the six-membered rings form a dihedral angle of 13.8 (1)° [71.6 (1)° in I], and O—H⋯N hydrogen bonds link mol­ecules into chains along [100], whereas the crystal structure of I features hydrogen-bonded centrosymmetric dimers

    Donor CD47 controls T cell alloresponses and is required for tolerance induction following hepatocyte allotransplantation

    Get PDF
    CD47-deficient hepatocyte transplantation induces rapid innate immune cell activation and subsequent associated graft loss in syngeneic recipients. However, the role of donor CD47 in regulation of T-cell alloresponses is poorly understood. We addressed this question by assessing OVA-specific immune responses in mice following hepatocyte transplantation from CD47-competent or -deficient OVAtransgenic donors. Compared to sham-operated controls, intrasplenic transplantation of CD47-deficient OVA+ hepatocytes significantly accelerated rejection of OVA+ skin grafted 7 days after hepatocyte transplantation. In contrast, mice receiving CD47-competent OVA+ hepatocytes showed prolonged and even indefinite survival of OVA+ skin allografts. T cells from mice receiving CD47-deficient, but not CD47-competent, OVA+ hepatocytes showed significantly enhanced responses to OVA+ stimulators compared to sham-operated controls. In contrast to the production of tolerogenic cytokines (IL-4 and IL-10) in the recipients of CD47-competent hepatocytes, mice receiving CD47-deficient hepatocytes showed elevated production of IFN-γ and IL-1α. Moreover, significant expansion of myeloid-derived suppressor cells was detected in the recipients of CD47-competent hepatocytes, which was required for tolerance induction in these mice. Thus, donor CD47 plays an important role in the control of T-cell alloresponses and tolerance induction following hepatocyte transplantation. Our data also suggest that intrasplenic hepatocyte transplantation may provide a means to induce allograft tolerance

    Rigid vortices in MgB2

    Full text link
    Magnetic relaxation of high-pressure synthesized MgB2_2 bulks with different thickness is investigated. It is found that the superconducting dia-magnetic moment depends on time in a logarithmic way; the flux-creep activation energy decreases linearly with the current density (as expected by Kim-Anderson model); and the activation energy increases linearly with the thickness of sample when it is thinner than about 1 mm. These features suggest that the vortices in the MgB2_2 are rather rigid, and the pinning and creep can be well described by Kim-Anderson model.Comment: Typo corrected & reference adde

    Posttransplant Hemophagocytic Lymphohistiocytosis Driven by Myeloid Cytokines and Vicious Cycles of T-Cell and Macrophage Activation in Humanized Mice

    Get PDF
    Hemophagocytic lymphohistiocytosis (HLH) has recently been increasingly reported as an important complication after stem cell transplantation, in line with the increase in the number of HLA-mismatched transplantation. Although previous clinical studies have shown an elevation of inflammatory cytokines in patients with HLH after hematopoietic stem cell transplantation, as well as those after viral infection or autoimmune disease, the disease pathogenesis remains poorly understood. Here we explored this issue in humanized mice with functional human lymphohematopoietic systems, which were constructed by transplantation of human CD34+ cells alone, or along with human fetal thymus into NOD/SCID/γc−/− (NSG) or NSG mice carrying human SCF/GM-CSF/IL-3 transgenes (SGM3). In comparison with humanized NSG (huNSG) mice, huSGM3 mice had higher human myeloid reconstitution and aggressive expansion of human CD4+ memory T cells, particularly in the absence of human thymus. Although all huNSG mice appeared healthy throughout the observation period of over 20 weeks, huSGM3 mice developed fatal disease characterized by severe human T cell and macrophage infiltrations to systemic organs. HuSGM3 mice also showed severe anemia and thrombocytopenia with hypoplastic bone marrow, but increased reticulocyte counts in blood. In addition, huSGM3 mice showed a significant elevation in human inflammatory cytokines including IL-6, IL-18, IFN-α, and TNF-γ, faithfully reproducing HLH in clinical situations. Our study suggests that posttransplant HLH is triggered by alloresponses (or xenoresponses in our model), driven by myeloid cytokines, and exacerbated by vicious cycles of T-cell and macrophage activation

    Practical Phase-Coding Side-Channel-Secure Quantum Key Distribution

    Full text link
    All kinds of device loopholes give rise to a great obstacle to practical secure quantum key distribution (QKD). In this article, inspired by the original side-channel-secure protocol [Physical Review Applied 12, 054034 (2019)], a new QKD protocol called phase-coding side-channel-secure (PC-SCS) protocol is proposed. This protocol can be immune to all uncorrelated side channels of the source part and all loopholes of the measurement side. A finite-key security analysis against coherent attack of the new protocol is given. The proposed protocol only requires modulation of two phases, which can avoid the challenge of preparing perfect vacuum states. Numerical simulation shows that a practical transmission distance of 300 km can be realized by the PC-SCS protocol
    corecore