159 research outputs found

    Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>Here we aimed to firstly investigate the role of miR-27a in proliferation and multidrug resistance of gastric cancer cells.</p> <p>Methods</p> <p>The role of miR-27a in gastric cancer cells was detected using MTT assay, soft agar assay, flow cytometry assay, nude mice assay, real-time PCR, western blot and reporter gene assay, etc.</p> <p>Results</p> <p>Down-regulation of miR-27a could inhibit porliferation of gastric cancer cells in vitro and in vivo. Down-regulation of miR-27a could also confer sensitivity of drugs on gastric cancer cells, and might increase accumulation and decrease releasing amount of adriamycin in gastric cancer cells. Down-regulation of miR-27a could significantly decrease the expression of P-glycoprotein and the transcriptional activity of cyclin D1, and up-regulate the expression of p21.</p> <p>Conclusions</p> <p>MiR-27a might play important roles in porliferation and drug resistance of gastric cancer. MiR-27a might be considered as a useful target for cancer therapy.</p

    Characterization of the Interaction of Full-Length HIV-1 Vif Protein with its Key Regulator CBFβ and CRL5 E3 Ubiquitin Ligase Components

    Get PDF
    Human immunodeficiency virus-1 (HIV-1) viral infectivity factor (Vif) is essential for viral replication because of its ability to eliminate the host's antiviral response to HIV-1 that is mediated by the APOBEC3 family of cellular cytidine deaminases. Vif targets these proteins, including APOBEC3G, for polyubiquitination and subsequent proteasome-mediated degradation via the formation of a Cullin5-ElonginB/C-based E3 ubiquitin ligase. Determining how the cellular components of this E3 ligase complex interact with Vif is critical to the intelligent design of new antiviral drugs. However, structural studies of Vif, both alone and in complex with cellular partners, have been hampered by an inability to express soluble full-length Vif protein. Here we demonstrate that a newly identified host regulator of Vif, core-binding factor-beta (CBFβ), interacts directly with Vif, including various isoforms and a truncated form of this regulator. In addition, carboxyl-terminal truncations of Vif lacking the BC-box and cullin box motifs were sufficient for CBFβ interaction. Furthermore, association of Vif with CBFβ, alone or in combination with Elongin B/C (EloB/C), greatly increased the solubility of full-length Vif. Finally, a stable complex containing Vif-CBFβ-EloB/C was purified in large quantity and shown to bind purified Cullin5 (Cul5). This efficient strategy for purifying Vif-Cul5-CBFβ-EloB/C complexes will facilitate future structural and biochemical studies of Vif function and may provide the basis for useful screening approaches for identifying novel anti-HIV drug candidates

    Parity-related molecular signatures and breast cancer subtypes by estrogen receptor status

    Get PDF
    INTRODUCTION: Relationships of parity with breast cancer risk are complex. Parity is associated with decreased risk of postmenopausal hormone receptor–positive breast tumors, but may increase risk for basal-like breast cancers and early-onset tumors. Characterizing parity-related gene expression patterns in normal breast and breast tumor tissues may improve understanding of the biological mechanisms underlying this complex pattern of risk. METHODS: We developed a parity signature by analyzing microRNA microarray data from 130 reduction mammoplasty (RM) patients (54 nulliparous and 76 parous). This parity signature, together with published parity signatures, was evaluated in gene expression data from 150 paired tumors and adjacent benign breast tissues from the Polish Breast Cancer Study, both overall and by tumor estrogen receptor (ER) status. RESULTS: We identified 251 genes significantly upregulated by parity status in RM patients (parous versus nulliparous; false discovery rate = 0.008), including genes in immune, inflammation and wound response pathways. This parity signature was significantly enriched in normal and tumor tissues of parous breast cancer patients, specifically in ER-positive tumors. CONCLUSIONS: Our data corroborate epidemiologic data, suggesting that the etiology and pathogenesis of breast cancers vary by ER status, which may have implications for developing prevention strategies for these tumors

    The Haploinsufficient Hematopoietic Microenvironment Is Critical to the Pathological Fracture Repair in Murine Models of Neurofibromatosis Type 1

    Get PDF
    Germline mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a complex genetic disorder with a high predisposition of numerous skeletal dysplasias including short stature, osteoporosis, kyphoscoliosis, and fracture non-union (pseudoarthrosis). We have developed murine models that phenocopy many of the skeletal dysplasias observed in NF1 patients, including reduced bone mass and fracture non-union. We also show that the development of these skeletal manifestations requires an Nf1 haploinsufficient background in addition to nullizygous loss of Nf1 in mesenchymal stem/progenitor cells (MSCs) and/or their progenies. This is replicated in two animal models of NF1, PeriCre+;Nf1flox/− and Col2.3Cre+;Nf1flox/−mice. Adoptive transfer experiments demonstrate a critical role of the Nf1+/− marrow microenvironment in the impaired fracture healing in both models and adoptive transfer of WT bone marrow cells improves fracture healing in these mice. To our knowledge, this is the first demonstration of a non-cell autonomous mechanism in non-malignant NF1 manifestations. Collectively, these data provide evidence of a combinatory effect between nullizygous loss of Nf1 in osteoblast progenitors and haploinsufficiency in hematopoietic cells in the development of non-malignant NF1 manifestations

    Identification of a Novel Marine Fish Virus, Singapore Grouper Iridovirus-Encoded MicroRNAs Expressed in Grouper Cells by Solexa Sequencing

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are ubiquitous non-coding RNAs that regulate gene expression at the post-transcriptional level. An increasing number of studies has revealed that viruses can also encode miRNAs, which are proposed to be involved in viral replication and persistence, cell-mediated antiviral immune response, angiogenesis, and cell cycle regulation. Singapore grouper iridovirus (SGIV) is a pathogenic iridovirus that has severely affected grouper aquaculture in China and Southeast Asia. Comprehensive knowledge about the related miRNAs during SGIV infection is helpful for understanding the infection and the pathogenic mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether SGIV encoded miRNAs during infection, a small RNA library derived from SGIV-infected grouper (GP) cells was constructed and sequenced by Illumina/Solexa deep-sequencing technology. We recovered 6,802,977 usable reads, of which 34,400 represented small RNA sequences encoded by SGIV. Sixteen novel SGIV-encoded miRNAs were identified by a computational pipeline, including a miRNA that shared a similar sequence to herpesvirus miRNA HSV2-miR-H4-5p, which suggests miRNAs are conserved in far related viruses. Generally, these 16 miRNAs are dispersed throughout the SGIV genome, whereas three are located within the ORF057L region. Some SGIV-encoded miRNAs showed marked sequence and length heterogeneity at their 3' and/or 5' end that could modulate their functions. Expression levels and potential biological activities of these viral miRNAs were examined by stem-loop quantitative RT-PCR and luciferase reporter assay, respectively, and 11 of these viral miRNAs were present and functional in SGIV-infected GP cells. CONCLUSIONS: Our study provided a genome-wide view of miRNA production for iridoviruses and identified 16 novel viral miRNAs. To the best of our knowledge, this is the first experimental demonstration of miRNAs encoded by aquatic animal viruses. The results provide a useful resource for further in-depth studies on SGIV infection and iridovirus pathogenesis

    Transcriptome analysis of orange-spotted grouper (Epinephelus coioides) spleen in response to Singapore grouper iridovirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Orange-spotted grouper (<it>Epinephelus coioides</it>) is an economically important marine fish cultured in China and Southeast Asian countries. The emergence of infectious viral diseases, including iridovirus and betanodavirus, have severely affected food products based on this species, causing heavy economic losses. Limited available information on the genomics of <it>E. coioides </it>has hampered the understanding of the molecular mechanisms that underlie host-virus interactions. In this study, we used a 454 pyrosequencing method to investigate differentially-expressed genes in the spleen of the <it>E. coioides </it>infected with Singapore grouper iridovirus (SGIV).</p> <p>Results</p> <p>Using 454 pyrosequencing, we obtained abundant high-quality ESTs from two spleen-complementary DNA libraries which were constructed from SGIV-infected (V) and PBS-injected fish (used as a control: C). A total of 407,027 and 421,141 ESTs were produced in control and SGIV infected libraries, respectively. Among the assembled ESTs, 9,616 (C) and 10,426 (V) ESTs were successfully matched against known genes in the NCBI non-redundant (nr) database with a cut-off E-value above 10<sup>-5</sup>. Gene ontology (GO) analysis indicated that "cell part", "cellular process" and "binding" represented the largest category. Among the 25 clusters of orthologous group (COG) categories, the cluster for "translation, ribosomal structure and biogenesis" represented the largest group in the control (185 ESTs) and infected (172 ESTs) libraries. Further KEGG analysis revealed that pathways, including cellular metabolism and intracellular immune signaling, existed in the control and infected libraries. Comparative expression analysis indicated that certain genes associated with mitogen-activated protein kinase (MAPK), chemokine, toll-like receptor and RIG-I signaling pathway were alternated in response to SGIV infection. Moreover, changes in the pattern of gene expression were validated by qRT-PCR, including cytokines, cytokine receptors, and transcription factors, apoptosis-associated genes, and interferon related genes.</p> <p>Conclusion</p> <p>This study provided abundant ESTs that could contribute greatly to disclosing novel genes in marine fish. Furthermore, the alterations of predicted gene expression patterns reflected possible responses of these fish to the virus infection. Taken together, our data not only provided new information for identification of novel genes from marine vertebrates, but also shed new light on the understanding of defense mechanisms of marine fish to viral pathogens.</p

    The Role of SDF-1-CXCR4/CXCR7 Axis in the Therapeutic Effects of Hypoxia-Preconditioned Mesenchymal Stem Cells for Renal Ischemia/Reperfusion Injury

    Get PDF
    In vitro hypoxic preconditioning (HP) of mesenchymal stem cells (MSCs) could ameliorate their viability and tissue repair capabilities after transplantation into the injured tissue through yet undefined mechanisms. There is also experimental evidence that HP enhances the expression of both stromal-derived factor-1 (SDF-1) receptors, CXCR4 and CXCR7, which are involved in migration and survival of MSCs in vitro, but little is known about their role in the in vivo therapeutic effectiveness of MSCs in renal ischemia/reperfusion (I/R) injury. Here, we evaluated the role of SDF-1-CXCR4/CXCR7 pathway in regulating chemotaxis, viability and paracrine actions of HP-MSCs in vitro and in vivo. Compared with normoxic preconditioning (NP), HP not only improved MSC chemotaxis and viability but also stimulated secretion of proangiogenic and mitogenic factors. Importantly, both CXCR4 and CXCR7 were required for the production of paracrine factors by HP-MSCs though the former was only responsible for chemotaxis while the latter was for viability. SDF-1α expression was upregulated in postischemic kidneys. After 24 h systemical administration following I/R, HP-MSCs but not NP-MSCs were selectively recruited to ischemic kidneys and this improved recruitment was abolished by neutralization of CXCR4, but not CXCR7. Furthermore, the increased recruitment of HP-MSCs was associated with enhanced functional recovery, accelerated mitogenic response, and reduced apoptotic cell death. In addition, neutralization of either CXCR4 or CXCR7 impaired the improved therapeutic potential of HP-MSCs. These results advance our knowledge about SDF-1-CXCR4/CXCR7 axis as an attractive target pathway for improving the beneficial effects of MSC-based therapies for renal I/R
    • …
    corecore