20 research outputs found

    An Exercise Health Simulation Method Based on Integrated Human Thermophysiological Model

    Get PDF
    Research of healthy exercise has garnered a keen research for the past few years. It is known that participation in a regular exercise program can help improve various aspects of cardiovascular function and reduce the risk of suffering from illness. But some exercise accidents like dehydration, exertional heatstroke, and even sudden death need to be brought to attention. If these exercise accidents can be analyzed and predicted before they happened, it will be beneficial to alleviate or avoid disease or mortality. To achieve this objective, an exercise health simulation approach is proposed, in which an integrated human thermophysiological model consisting of human thermal regulation model and a nonlinear heart rate regulation model is reported. The human thermoregulatory mechanism as well as the heart rate response mechanism during exercise can be simulated. On the basis of the simulated physiological indicators, a fuzzy finite state machine is constructed to obtain the possible health transition sequence and predict the exercise health status. The experiment results show that our integrated exercise thermophysiological model can numerically simulate the thermal and physiological processes of the human body during exercise and the predicted exercise health transition sequence from finite state machine can be used in healthcare

    Comparisons of Combined Oxidant Capacity and Redox-Weighted Oxidant Capacity in Their Association with Increasing Levels of COVID-19 Infection

    No full text
    Background: Ozone (O3) and nitrogen dioxide (NO2) are substances with oxidizing ability in the atmosphere. Only considering the impact of a single substance is not comprehensive. However, people’s understanding of “total oxidation capacity” (Ox) and “weighted average oxidation” (Oxwt) is limited. Objectives: This investigation aims to assess the impact of Ox and Oxwt on the novel coronavirus disease (COVID-19). We also compared the relationship between the different calculation methods of Ox and Oxwt and the COVID-19 infection rate. Method: We recorded confirmed COVID-19 cases and daily pollutant concentrations (O3 and NO2) in 34 provincial capital cities in China. The generalized additive model (GAM) was used to analyze the nonlinear relationship between confirmed COVID-19 cases and Ox and Oxwt. Result: Our results indicated that the correlation between Ox and COVID-19 was more sensitive than Oxwt. The hysteresis effect of Ox and Oxwt decreased with time. The most obvious statistical data was observed in Central China and South China. A 10 µg m−3 increase in mean Ox concentrations were related to a 23.1% (95%CI: 11.4%, 36.2%) increase, and a 10 µg m−3 increase in average Oxwt concentration was related to 10.7% (95%CI: 5.2%, 16.8%) increase in COVID-19. In conclusion, our research results show that Ox and Oxwt can better replace the single pollutant research on O3 and NO2, which is used as a new idea for future epidemiological research

    Assessing the physical impact of cyber-attacks on industrial cyber-physical systems

    No full text
    Industrial Cyber-Physical systems (ICPSs) are widely applied in critical infrastructures such as chemical plants, water distribution networks, and power grid. However, they face various cyber-attacks, which may cause physical damage to these industrial facilities. Therefore, ensuring the security of ICPSs is of paramount importance. For this purpose, a new risk assessment method is presented in this paper to quantify the impact of cyber-attacks on the physical system of ICPSs. It helps carry out appropriate attack mitigation measures. The method uses a Bayesian network to model the attack propagation process and infers the probabilities of sensors and actuators to be compromised. These probabilities are fed into a stochastic hybrid system (SHS) model to predict the evolution of the physical process being controlled. Then, the security risk is quantified by evaluating the system availability with the SHS model. The effectiveness of the proposed method is demonstrated with a case study on a hardware-in-the-loop simulation testbed

    A Novel Exercise Thermophysiology Comfort Prediction Model with Fuzzy Logic

    No full text
    Participation in a regular exercise program can improve health status and contribute to an increase in life expectancy. However, exercise accidents like dehydration, exertional heatstroke, syncope, and even sudden death exist. If these accidents can be analyzed or predicted before they happen, it will be beneficial to alleviate or avoid uncomfortable or unacceptable human disease. Therefore, an exercise thermophysiology comfort prediction model is needed. In this paper, coupling the thermal interactions among human body, clothing, and environment (HCE) as well as the human body physiological properties, a human thermophysiology regulatory model is designed to enhance the human thermophysiology simulation in the HCE system. Some important thermal and physiological performances can be simulated. According to the simulation results, a human exercise thermophysiology comfort prediction method based on fuzzy inference system is proposed. The experiment results show that there is the same prediction trend between the experiment result and simulation result about thermophysiology comfort. At last, a mobile application platform for human exercise comfort prediction is designed and implemented

    Step Frequency TR-MUSIC for Soft Fault Detection and Location in Coaxial Cable

    No full text
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Soft faults in cables may trigger short circuits and open circuits in time, in that, they ought to be detected and thus eliminated at an earliest possible stage, as to ensure safe and stable operation of the cables. A method called the time-reversal multiple signal classification (TR-MUSIC) had been proposed in the literature, which has been demonstrated to be an effective technique for locating soft faults in cables, owing to its high resolution and excellent noise robustness. However, traditional TR-MUSIC relies on a vector network analyzer for measuring the scattering matrix of cables, which adds cost and complexity to its implementation. In this regard, a new way of acquiring the desired scattering parameters is herein proposed. An arbitrary function generator is used to inject incident signals into the cable under test, and an oscilloscope is used to collect the reflected signals. After post-processing, the phase of scattering parameters can be obtained. There's another key issue in the image of the detection results, ghost traces caused by the periodicity of Green's function severely impact the vision saliency of the actual fault location, which limits the performance of the fault location. A step frequency variant of TR-MUSIC has been proposed, therefore, to mitigate ghost traces. Experimental results show that the fault location error of the proposed approach is smaller than 0.33% for a 51-m long coaxial cable. Moreover, in the case of introducing noise, the proposed approach can operate in situations with signal-to-noise ratios as low as dB

    Local ancestry and selection in admixed Sanjiang cattle

    No full text
    Abstract The majority of native cattle are taurine × indicine cattle of diverse phenotypes in the central region of China. Sanjiang cattle, a typical breed in the central region, play a central role in human livelihood and have good adaptability, including resistance to dampness, heat, roughage, and disease, and are thus regarded as an important genetic resource. However, the genetic history of the successful breed remains unknown. Here, we sequenced 10 Sanjiang cattle genomes and compared them to the 70 genomes of 5 representative populations worldwide. We characterized the genomic diversity and breed formation process of Sanjiang cattle and found that Sanjiang cattle have a mixed ancestry of indicine (55.6%) and taurine (33.2%) dating to approximately 30 generations ago, which has shaped the genome of Sanjiang cattle. Through ancestral fragment inference, selective sweep and transcriptomic analysis, we identified several genes linked to lipid metabolism, immune regulation, and stress reactions across the mosaic genome of Sanjiang cattle showing an excess of taurine or indicine ancestry. Taurine ancestry might contribute to meat quality, and indicine ancestry is more conducive to adaptation to hot climate conditions, making Sanjiang cattle a valuable genetic resource for the central region of China. Our results will help us understand the evolutionary history and ancestry components of Sanjiang cattle, which will provide a reference for resource conservation and selective breeding of Chinese native cattle

    Two Different Copy Number Variations of the CLCN2 Gene in Chinese Cattle and Their Association with Growth Traits

    No full text
    Copy number variation (CNV) can affect gene function and even individual phenotypic traits by changing the transcription and translation level of related genes, and it also plays an important role in species evolution. Chloride voltage-gated channel 2 (CLCN2) encodes a voltage-gated chloride channel (CLC-2), which has a wide organ distribution and is ubiquitously expressed. Based on previous studies, we hypothesize that CLCN2 could be a candidate gene involved in cell volume regulation, transepithelial transport and cell proliferation. This study aimed to explore CNVs in the CLCN2 gene and investigate its association with growth traits in four Chinese cattle breeds (Yunling cattle, Xianan cattle, Qinchuan cattle and Pinan cattle). We identified there are two copy number variation regions (CNV1: 3600 bp, including exon 2–11; CNV2: 4800 bp, including exon 21–22) of the CLCN2 gene. The statistical analysis showed that the CNV1 mutation in the YL cattle population was significantly associated with cannon circumference (p < 0.01). The CNV2 mutation in the XN cattle population had a significant effect on body slanting length, chest girth and body weight (p < 0.05). In the YL cattle, the association analysis of CLCN2 gene CNV1 and CNV2 combination with cannon circumference was significant (p < 0.01). Our results provide evidence that CNV1 and CNV2 in CLCN2 are associated with growth traits in two different cattle populations and could be used as candidate markers for cattle molecular breeding

    Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle

    No full text
    Currently, studies of the SYT11 gene mainly focus on neurological diseases such as schizophrenia and Parkinson’s disease. However, some studies have shown that the C2B domain of SYT11 can interact with RISC components and affect the gene regulation of miRNA, which is important for cell differentiation, proliferation, and apoptosis, and therefore has an impact on muscle growth and development in animals. The whole-genome resequencing data detected a CNV in the SYT11 gene, and this may affect cattle growth traits. In this study, CNV distribution of 672 individuals from four cattle breeds, Yunling, Pinan, Xianan, and Qinchuan, were detected by qPCR. The relationship between CNV, gene expression and growth traits was further investigated. The results showed that the proportion of multiple copy types was the largest in all cattle breeds, but there were some differences among different breeds. The normal type had higher gene expression than the abnormal copy type. The CNVs of the SYT11 gene were significantly correlated with body length, cannon circumference, chest depth, rump length, and forehead size of Yunling cattle, and was significantly correlated with the bodyweight of Xianan cattle, respectively. These data improve our understanding of the effects of CNV on cattle growth traits. Our results suggest that the CNV of SYT11 gene is a protentional molecular marker, which may be used to improve growth traits in Chinese cattle
    corecore