33 research outputs found
Flexible ultraviolet and ambient light sensor based on nanomaterial network fabricated by using selective and localized wet-chemical reactions
We report ZnO nanowire- and TiO_2 nanotube-based light sensors on flexible polymer substrates fabricated by localized hydrothermal synthesis and liquid phase deposition (LPD). This method realized simple and cost-effective in situ synthesis and integration of one-dimensional ZnO and TiO_2 nanomaterials. The fabricated sensor devices with ZnO nanowires and TiO_2 nanotubes show very high sensitivity and quick response to the ultraviolet (UV) and ambient light, respectively. In addition, our direct synthesis and integration method result in mechanical robustness under external loading such as static and cyclic bending because of the strong bonding between the nanomaterial and the electrode. By controlling the reaction time of the LPD process, the Ti/Zn ratio could be simply modulated and the spectral sensitivity to the light in the UV to visible range could be controlled
Overcoming evanescent field decay using 3D-tapered nanocavities for on-chip targeted molecular analysis
Enhancement of optical emission on plasmonic nanostructures is intrinsically limited by the distance between the emitter and nanostructure surface, owing to a tightly-confined and exponentially-decaying electromagnetic field. This fundamental limitation prevents efficient application of plasmonic fluorescence enhancement for diversely-sized molecular assemblies. We demonstrate a three-dimensionally-tapered gap plasmon nanocavity that overcomes this fundamental limitation through near-homogeneous yet powerful volumetric confinement of electromagnetic field inside an open-access nanotip. The 3D-tapered device provides fluorescence enhancement factors close to 2200 uniformly for various molecular assemblies ranging from few angstroms to 20 nanometers in size. Furthermore, our nanostructure allows detection of low concentration (10 pM) biomarkers as well as specific capture of single antibody molecules at the nanocavity tip for high resolution molecular binding analysis. Overcoming molecule position-derived large variations in plasmonic enhancement can propel widespread application of this technique for sensitive detection and analysis of complex molecular assemblies at or near single molecule resolution
Localized Liquid-Phase Synthesis of Porous SnO_2 Nanotubes on MEMS Platform for Low Power, High Performance Gas Sensors
We have developed highly sensitive, low-power gas sensors through the novel integration method of porous SnO_2 nanotubes (NTs) on a micro-electro-mechanical-systems (MEMS) platform. As a template material, ZnO nanowires (NWs) were directly synthesized on beam-shaped, suspended microheaters through an in situ localized hydrothermal reaction induced by local thermal energy around the Joule-heated area. Also, the liquid-phase deposition process enabled the formation of a porous SnO_2 thin film on the surface of ZnO NWs and simultaneous etching of the ZnO core, eventually to generate porous SnO_2 NTs. Because of the localized synthesis of SnO_2 NTs on the suspended microheater, very low power for the gas sensor operation (<6 mW) has been realized. Moreover, the sensing performance (e.g., sensitivity and response time) of synthesized SnO_2 NTs was dramatically enhanced compared to that of ZnO NWs. In addition, the sensing performance was further improved by forming SnO_2āZnO hybrid nanostructures due to the heterojunction effect
Design of Large-Scale Microwave Cavity for Uniform and Efficient Plastic Heating
To reduce carbon emissions during heating in the manufacturing processes, microwave technology has attracted significant attention. Microwaves have considerable advantages over traditional heating methods, including more rapid heating, lower thermal damage, and eco-friendly processes. To apply microwaves to the manufacturing process, uniform and efficient heating is required. We analyzed the effect of various design parameters for uniform and efficient heating by changing the cavity heights, application of the reflector, and number and positions of waveguides. We conducted a numerical simulation and verified the findings by experiments. The results showed that a slight change in the cavity height altered the electromagnetic field distribution and heating parameters, such as the coefficient of variance and power absorption efficiency. With reflectors installed, 66% of cases exhibited better comprehensive evaluation coefficient (CEC) with consideration of uniform heating and power absorption. The spherical reflector showed 81% of cases, better than those of the ordinary model without a reflector. Furthermore, when double waveguides were installed, the average coefficient of variance (COV) was improved by 22%, and power absorption efficiency was increased by 53% compared to the single waveguide case. When the power applied to the waveguides was doubled, the average COV values improved by 18%. This large-scale analysis will be helpful in applying microwaves to actual industrial sites
Cost-Effective and Facile Fabrication of a Tattoo Paper-Based SERS Substrate and Its Application in Pesticide Sensing on Fruit Surfaces
Surface-enhanced Raman spectroscopy (SERS) has been transformed into a useful analytical technique with significant advantages in relation to sensitive and low-concentration chemical analyses. However, SERS substrates are expensive and the analyte sample preparation is complicated; hence, it is only used in limited areas. We have fabricated a tattoo paper-based SERS substrate by using non-complicated inkjet printing. The sensitivity of the SERS substrate was increased by removing the carbon residues via exposure to ultraviolet light without damaging the substrate. Thus, low concentrations of pesticides (up to 1 Ī¼M thiram) were measured. The SERS substrate was attached to the curved surface of an apple to demonstrate its advantages, such as the flexibility and easy attachability of tattoo paper, and its feasibility was verified by measuring 1 Ī¼M thiram on the appleās surface. Due to its economic cost, simple usage, and rapid measurement, it will be helpful for the identification of both agricultural adulterants and food adulterants and for water-based pollutant detection. It will also possibly be helpful for medical purposes related to human body surfaces in the future
Experimental Study on Ion Transport in Microfluidic Electrodialysis Using Partially Masked Ion Exchange Membranes
Electrodialysis using anion-exchange membranes (AEMs) and cation-exchange membranes (CEMs) has been widely used for water desalination and the management of various ionic species. During commercial electrodialysis, the available area of an ion-exchange membrane is reduced by a non-conductive spacer that is in contact with the AEM/CEM. Although multiple reports have described the advantages or disadvantages of spacers, fewer studies have explored the effects of spacers on the mass transport effect of the reduced membrane area excluding the fluid flow change. In this paper, we present our experimental studies concerning mass transport in microfluidic electrodialysis systems with partially masked ion-exchange membranes. Six different types of masking membranes were prepared by the deposition of non-conductive films on parts of the membranes. The experimental results showed that the overlapped types (in which masking was vertically aligned in the AEM/CEM) exhibited a larger electrical conductance and better current/energy efficiency, compared with the non-overlapped types (in which masking was vertically dislocated in the AEM/CEM). We also observed that a reduction in the unit length of the unmasked ion-exchange membrane enhanced overall mass transport. Our results demonstrate the effects of patterned membranes on electrical resistance and desalination performance; they also identify appropriate arrangements for electromembrane systems
Focused energy field method for the localized synthesis and direct integration of 1D nanomaterials on microelectronic devices
In the focused energy field method, localized heating, and convective mass transfer in a liquid precursor realizes selective synthesis and direct integration of 1D nanomaterials as well as their surface functionalization, all in a low-temperature, liquid environment. This allows facile fabrication of 1D nanomaterial-based nanoelectronic devices.N
Glucose measurement using Surface Enhanced Raman Scattering
Surface Enhanced Raman Scattering (SERS) has a great potential to serve as a monitoring technology for biomolecules, but sensing biomolecules for practical purposes have remained challenging for two reasons. One of the challenges is securing SERS substrates with uniform spatial enhancement that is crucial for quantitative measurements, and the other is finding proper linker molecules that will promote the surface enhancement. To address these challenges, we have been developing a new approach of using highly sensitive surface enhanced Raman scattering (SERS) platform for glucose sensing. In the presentation, I will discuss the fabrication of high performance 3D SERS substrate based on straightforward, two successive wet chemical processes, with experimentally proven strong enhancement and excellent spatial uniformity as well as the use of new linker molecules for making glucose-specific SERS substrates and their use in performing quantitative glucose measurements. Glucose sensing results from different development stages will be discussed