831 research outputs found

    A Review on the Little Ice Age and Factors to Glacier Changes in the Tian Shan, Central Asia

    Get PDF
    Mountain glaciers are a reliable and unequivocal indicator of climate change due to their sensitive response to changes in temperature and precipitation. The importance of mountain glaciers is best reflected in regions with limited precipitation, such as arid and semi-arid central Asia. High concentration of glaciers and meltwater from the Tian Shan contribute considerably to the freshwater resource in Xinjiang (China), Kyrgyzstan and nearby countries. Documenting glacier distribution and research on glacier changes can provide insights and scientific support for water management in central Asia. As the most recent glacial event, the Little Ice Age (LIA, approximately AD 1300–1850) signifies the cold periods prior to the warming trend in the twentieth century. Here we present an overview of topics recently studied on the modern and LIA glaciers in the Tian Shan of the central Asia. With data sets of the Glacier Inventory of China and the presumed LIA glacial extents, we applied statistical models in a case study of the eastern Tian Shan to examine the impact of local topographic and geometric factors on glacier area changes. The findings of glacier size and elevation as key local factors are representative and consistent with other studies

    A Review of Researches on Blockchain

    Get PDF
    Analyzing 242 articles related to the study of blockchain which were published in China and abroad from 2014 to 2016, and from the aspects of literature sources, research subjects, research methods and western countries, the basic frame of blockchain research classification is put forward. Summarize the current blockchain technology progress, research limitations and future development trends. The research shows that the domestic research on the blockchain is more decentralized, non-systematic, and has not reached a certain research depth. What’s more, it is lack of quantitative analysis. Digital currency, Internet finance, and the risk of blockchain technology research will be the focus of future research

    Covalent Organic Frameworks for Ion Conduction

    Get PDF
    Covalent organic frameworks (COFs) are an emerging class of crystalline porous materials constructed by the precise reticulation of organic building blocks through dynamic covalent bonds. Due to their facile preparation, easy modulation and functionalization, COFs have been considered as a powerful platform for engineering molecular devices in various fields, such as catalysis, energy storage and conversion, sensing, and bioengineering. Particularly, the highly ordered pores in the backbones with controlled pore size, topology, and interface property provide ideal pathways for the long-term ion conduction. Herein, we summarized the latest progress of COFs as solid ion conductors in energy devices, especially lithium-based batteries and fuel cells. The design strategies and performance in terms of transporting lithium ions, protons, and hydroxide anions are systematically illustrated. Finally, the current challenges and future research directions on COFs in energy devices are proposed, laying the groundwork for greater achievements for this emerging material

    Streaming Traffic Flow Prediction Based on Continuous Reinforcement Learning

    Full text link
    Traffic flow prediction is an important part of smart transportation. The goal is to predict future traffic conditions based on historical data recorded by sensors and the traffic network. As the city continues to build, parts of the transportation network will be added or modified. How to accurately predict expanding and evolving long-term streaming networks is of great significance. To this end, we propose a new simulation-based criterion that considers teaching autonomous agents to mimic sensor patterns, planning their next visit based on the sensor's profile (e.g., traffic, speed, occupancy). The data recorded by the sensor is most accurate when the agent can perfectly simulate the sensor's activity pattern. We propose to formulate the problem as a continuous reinforcement learning task, where the agent is the next flow value predictor, the action is the next time-series flow value in the sensor, and the environment state is a dynamically fused representation of the sensor and transportation network. Actions taken by the agent change the environment, which in turn forces the agent's mode to update, while the agent further explores changes in the dynamic traffic network, which helps the agent predict its next visit more accurately. Therefore, we develop a strategy in which sensors and traffic networks update each other and incorporate temporal context to quantify state representations evolving over time
    corecore