6,259 research outputs found

    Improved Rate-Equivocation Regions for Secure Cooperative Communication

    Full text link
    A simple four node network in which cooperation improves the information-theoretic secrecy is studied. The channel consists of two senders, a receiver, and an eavesdropper. One or both senders transmit confidential messages to the receiver, while the eavesdropper tries to decode the transmitted message. The main result is the derivation of a newly achievable rate-equivocation region that is shown to be larger than a rate-equivocation region derived by Lai and El Gamal for the relay-eavesdropper channel. When the rate of the helping interferer is zero, the new rate-equivocation region reduces to the capacity-equivocation region over the wire-tap channel, hence, the new achievability scheme can be seen as a generalization of a coding scheme proposed by Csiszar and Korner. This result can naturally be combined with a rate-equivocation region given by Tang et al. (for the interference assisted secret communication), yielding an even larger achievable rate-equivocation region.Comment: 18 pages, 5 figure

    Direct observation of the mass renormalization in SrVO3_3 by angle resolved photoemission spectroscopy

    Full text link
    We have performed an angle-resolved photoemission study of the three-dimensional perovskite-type SrVO3_3. Observed spectral weight distribution of the coherent part in the momentum space shows cylindrical Fermi surfaces consisting of the V 3dd t2gt_{2g} orbitals as predicted by local-density-approximation (LDA) band-structure calculation. The observed energy dispersion shows a moderately enhanced effective mass compared to the LDA results, corresponding to the effective mass enhancement seen in the thermodynamic properties. Contributions from the bulk and surface electronic structures to the observed spectra are discussed based on model calculations.Comment: 5 pages, 5 figure

    First principles investigation of transition-metal doped group-IV semiconductors: Rx{_x}Y1x_{1-x} (R=Cr, Mn, Fe; Y=Si, Ge)

    Full text link
    A number of transition-metal (TM) doped group-IV semiconductors, Rx_{x}Y1x_{1-x} (R=Cr, Mn and Fe; Y=Si, Ge), have been studied by the first principles calculations. The obtained results show that antiferromagnetic (AFM) order is energetically more favored than ferromagnetic (FM) order in Cr-doped Ge and Si with xx=0.03125 and 0.0625. In 6.25% Fe-doped Ge, FM interaction dominates in all range of the R-R distances while for Fe-doped Ge at 3.125% and Fe-doped Si at both concentrations of 3.125% and 6.25%, only in a short R-R range can the FM states exist. In the Mn-doped case, the RKKY-like mechanism seems to be suitable for the Ge host matrix, while for the Mn-doped Si, the short-range AFM interaction competes with the long-range FM interaction. The different origin of the magnetic orders in these diluted magnetic semiconductors (DMSs) makes the microscopic mechanism of the ferromagnetism in the DMSs more complex and attractive.Comment: 14 pages, 2 figures, 6 table

    Charmonium properties in deconfinement phase in anisotropic lattice QCD

    Get PDF
    J/Psi and eta_c above the QCD critical temperature T_c are studied in anisotropic quenched lattice QCD, considering whether the c\bar c systems above T_c are spatially compact (quasi-)bound states or scattering states. We adopt the standard Wilson gauge action and O(a)-improved Wilson quark action with renormalized anisotropy a_s/a_t =4.0 at \beta=6.10 on 16^3\times (14-26) lattices, which correspond to the spatial lattice volume V\equiv L^3\simeq(1.55{\rm fm})^3 and temperatures T\simeq(1.11-2.07)T_c. We investigate the c\bar c system above T_c from the temporal correlators with spatially-extended operators, where the overlap with the ground state is enhanced. To clarify whether compact charmonia survive in the deconfinement phase, we investigate spatial boundary-condition dependence of the energy of c\bar c systems above T_c. In fact, for low-lying S-wave c \bar c scattering states, it is expected that there appears a significant energy difference \Delta E \equiv E{\rm (APBC)}-E{\rm (PBC)}\simeq2\sqrt{m_c^2+3\pi^2/L^2}-2m_c (m_c: charm quark mass) between periodic and anti-periodic boundary conditions on the finite-volume lattice. In contrast, for compact charmonia, there is no significant energy difference between periodic and anti-periodic boundary conditions. As a lattice QCD result, almost no spatial boundary-condition dependence is observed for the energy of the c\bar c system in J/\Psi and \eta_c channels for T\simeq(1.11-2.07)T_c. This fact indicates that J/\Psi and \eta_c would survive as spatially compact c\bar c (quasi-)bound states below 2T_c. We also investigate a PP-wave channel at high temperature with maximally entropy method (MEM) and find no low-lying peak structure corresponding to \chi_{c1} at 1.62T_c.Comment: 13 pages, 11 figure

    DYNAMICAL SYSTEM AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR FORESTRY KINEMATIC MODEL

    Full text link
    Joint Research on Environmental Science and Technology for the Eart
    corecore