25 research outputs found

    Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    Full text link
    The S-wave effective range parameters of the neutron-deuteron (nd) scattering are derived in the Faddeev formalism, using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-nucleon force, yielding the observed value of the doublet scattering length and the correct differential cross sections below the deuteron breakup threshold. This conclusion is consistent with the previous result for the triton binding energy, which is nearly reproduced by fss2 without reinforcing it with the three-nucleon force.Comment: 21 pages, 6 figures and 6 tables, submitted to Prog. Theor. Phy

    Single-crossover recombination and ancestral recombination trees

    Full text link
    We consider the Wright-Fisher model for a population of NN individuals, each identified with a sequence of a finite number of sites, and single-crossover recombination between them. We trace back the ancestry of single individuals from the present population. In the NN \to \infty limit without rescaling of parameters or time, this ancestral process is described by a random tree, whose branching events correspond to the splitting of the sequence due to recombination. With the help of a decomposition of the trees into subtrees, we calculate the probabilities of the topologies of the ancestral trees. At the same time, these probabilities lead to a semi-explicit solution of the deterministic single-crossover equation. The latter is a discrete-time dynamical system that emerges from the Wright-Fisher model via a law of large numbers and has been waiting for a solution for many decades.Comment: J. Math. Biol., in press. 26 pages, 8 figure

    Stability and monotonicity of Lotka–Volterra type operators

    Get PDF
    In the present paper,we investigate stability of trajectories ofLotka–Volterra (LV) type operators defined in finite dimensional simplex.We prove that any LV type operator is a surjection of the simplex. It is introduced a newclass of LV-type operators, called MLV type ones, and we show that trajectories of the introduced operators converge. Moreover, we show that such kind of operators have totally different behavior than f-monotone LV type operators
    corecore