104 research outputs found

    Statistical Properties of Random Banded Matrices with Strongly Fluctuating Diagonal Elements

    Full text link
    The random banded matrices (RBM) whose diagonal elements fluctuate much stronger than the off-diagonal ones were introduced recently by Shepelyansky as a convenient model for coherent propagation of two interacting particles in a random potential. We treat the problem analytically by using the mapping onto the same supersymmetric nonlinear σ\sigma-model that appeared earlier in consideration of the standard RBM ensemble, but with renormalized parameters. A Lorentzian form of the local density of states and a two-scale spatial structure of the eigenfunctions revealed recently by Jacquod and Shepelyansky are confirmed by direct calculation of the distribution of eigenfunction components.Comment: 7 pages,RevTex, no figures Submitted to Phys.Rev.

    Level curvature distribution in a model of two uncoupled chaotic subsystems

    Get PDF
    We study distributions of eigenvalue curvatures for a block diagonal random matrix perturbed by a full random matrix. The most natural physical realization of this model is a quantum chaotic system with some inherent symmetry, such that its energy levels form two independent subsequences, subject to a generic perturbation which does not respect the symmetry. We describe analytically a crossover in the form of a curvature distribution with a tunable parameter namely the ratio of inter/intra subsystem coupling strengths. We find that the peak value of the curvature distribution is much more sensitive to the changes in this parameter than the power law tail behaviour. This observation may help to clarify some qualitative features of the curvature distributions observed experimentally in acoustic resonances of quartz blocks

    On the statistics of resonances and non-orthogonal eigenfunctions in a model for single-channel chaotic scattering

    Full text link
    We describe analytical and numerical results on the statistical properties of complex eigenvalues and the corresponding non-orthogonal eigenvectors for non-Hermitian random matrices modeling one-channel quantum-chaotic scattering in systems with broken time-reversal invariance.Comment: 4 pages, 2 figure

    On absolute moments of characteristic polynomials of a certain class of complex random matrices

    Get PDF
    Integer moments of the spectral determinant det(zIW)2|\det(zI-W)|^2 of complex random matrices WW are obtained in terms of the characteristic polynomial of the Hermitian matrix WWWW^* for the class of matrices W=AUW=AU where AA is a given matrix and UU is random unitary. This work is motivated by studies of complex eigenvalues of random matrices and potential applications of the obtained results in this context are discussed.Comment: 41 page, typos correcte

    Localization and fluctuations of local spectral density on tree-like structures with large connectivity: Application to the quasiparticle line shape in quantum dots

    Full text link
    We study fluctuations of the local density of states (LDOS) on a tree-like lattice with large branching number mm. The average form of the local spectral function (at given value of the random potential in the observation point) shows a crossover from the Lorentzian to semicircular form at α1/m\alpha\sim 1/m, where α=(V/W)2\alpha= (V/W)^2, VV is the typical value of the hopping matrix element, and WW is the width of the distribution of random site energies. For α>1/m2\alpha>1/m^2 the LDOS fluctuations (with respect to this average form) are weak. In the opposite case, α<1/m2\alpha<1/m^2, the fluctuations get strong and the average LDOS ceases to be representative, which is related to the existence of the Anderson transition at αc1/(m2log2m)\alpha_c\sim 1/(m^2\log^2m). On the localized side of the transition the spectrum is discrete, and LDOS is given by a set of δ\delta-like peaks. The effective number of components in this regime is given by 1/P1/P, with PP being the inverse participation ratio. It is shown that PP has in the transition point a limiting value PcP_c close to unity, 1Pc1/logm1-P_c\sim 1/\log m, so that the system undergoes a transition directly from the deeply localized to extended phase. On the side of delocalized states, the peaks in LDOS get broadened, with a width exp{constlogm[(ααc)/αc]1/2}\sim\exp\{-{const}\log m[(\alpha-\alpha_c)/\alpha_c]^{-1/2}\} being exponentially small near the transition point. We discuss application of our results to the problem of the quasiparticle line shape in a finite Fermi system, as suggested recently by Altshuler, Gefen, Kamenev, and Levitov.Comment: 12 pages, 1 figure. Misprints in eqs.(21) and (28) corrected, section VII added. Accepted for publication in Phys. Rev.

    Exact asymptotics of the freezing transition of a logarithmically correlated random energy model

    Full text link
    We consider a logarithmically correlated random energy model, namely a model for directed polymers on a Cayley tree, which was introduced by Derrida and Spohn. We prove asymptotic properties of a generating function of the partition function of the model by studying a discrete time analogy of the KPP-equation - thus translating Bramson's work on the KPP-equation into a discrete time case. We also discuss connections to extreme value statistics of a branching random walk and a rescaled multiplicative cascade measure beyond the critical point

    Delay times and reflection in chaotic cavities with absorption

    Full text link
    Absorption yields an additional exponential decay in open quantum systems which can be described by shifting the (scattering) energy E along the imaginary axis, E+i\hbar/2\tau_{a}. Using the random matrix approach, we calculate analytically the distribution of proper delay times (eigenvalues of the time-delay matrix) in chaotic systems with broken time-reversal symmetry that is valid for an arbitrary number of generally nonequivalent channels and an arbitrary absorption rate 1/\tau_{a}. The relation between the average delay time and the ``norm-leakage'' decay function is found. Fluctuations above the average at large values of delay times are strongly suppressed by absorption. The relation of the time-delay matrix to the reflection matrix S^{\dagger}S is established at arbitrary absorption that gives us the distribution of reflection eigenvalues. The particular case of single-channel scattering is explicitly considered in detail.Comment: 5 pages, 3 figures; final version to appear in PRE (relation to reflection extended, new material with Fig.3 added, experiment cond-mat/0305090 discussed

    Counting function fluctuations and extreme value threshold in multifractal patterns: the case study of an ideal 1/f1/f noise

    Full text link
    To understand the sample-to-sample fluctuations in disorder-generated multifractal patterns we investigate analytically as well as numerically the statistics of high values of the simplest model - the ideal periodic 1/f1/f Gaussian noise. By employing the thermodynamic formalism we predict the characteristic scale and the precise scaling form of the distribution of number of points above a given level. We demonstrate that the powerlaw forward tail of the probability density, with exponent controlled by the level, results in an important difference between the mean and the typical values of the counting function. This can be further used to determine the typical threshold xmx_m of extreme values in the pattern which turns out to be given by xm(typ)=2clnlnM/lnMx_m^{(typ)}=2-c\ln{\ln{M}}/\ln{M} with c=3/2c=3/2. Such observation provides a rather compelling explanation of the mechanism behind universality of cc. Revealed mechanisms are conjectured to retain their qualitative validity for a broad class of disorder-generated multifractal fields. In particular, we predict that the typical value of the maximum pmaxp_{max} of intensity is to be given by lnpmax=αlnM+32f(α)lnlnM+O(1)-\ln{p_{max}} = \alpha_{-}\ln{M} + \frac{3}{2f'(\alpha_{-})}\ln{\ln{M}} + O(1), where f(α)f(\alpha) is the corresponding singularity spectrum vanishing at α=α>0\alpha=\alpha_{-}>0. For the 1/f1/f noise we also derive exact as well as well-controlled approximate formulas for the mean and the variance of the counting function without recourse to the thermodynamic formalism.Comment: 28 pages; 7 figures, published version with a few misprints corrected, editing done and references adde

    Imaginary Potential as a Counter of Delay Time for Wave Reflection from a 1D Random Potential

    Get PDF
    We show that the delay time distribution for wave reflection from a one-dimensional random potential is related directly to that of the reflection coefficient, derived with an arbitrarily small but uniform imaginary part added to the random potential. Physically, the reflection coefficient, being exponential in the time dwelt in the presence of the imaginary part, provides a natural counter for it. The delay time distribution then follows straightforwardly from our earlier results for the reflection coefficient, and coincides with the distribution obtained recently by Texier and Comtet [C.Texier and A. Comtet, Phys.Rev.Lett. {\bf 82}, 4220 (1999)],with all moments infinite. Delay time distribution for a random amplifying medium is then derived . In this case, however, all moments work out to be finite.Comment: 4 pages, RevTeX, replaced with added proof, figure and references. To appear in Phys. Rev. B Jan01 200

    On random symmetric matrices with a constraint: the spectral density of random impedance networks

    Full text link
    We derive the mean eigenvalue density for symmetric Gaussian random N x N matrices in the limit of large N, with a constraint implying that the row sum of matrix elements should vanish. The result is shown to be equivalent to a result found recently for the average density of resonances in random impedance networks [Y.V. Fyodorov, J. Phys. A: Math. Gen. 32, 7429 (1999)]. In the case of banded matrices, the analytical results are compared with those extracted from the numerical solution of Kirchhoff equations for quasi one-dimensional random impedance networks.Comment: 4 pages, 5 figure
    corecore