830 research outputs found
Collisional Effects on Fast Electron Generation and Transport in Fast Ignition
As the binary collision process requires much more computation time, a statistical electron-electron collision model based on modified Langevin equation is developed to reduce it. This collision model and a simple electron-ion scattering model are installed into one-dimensional PIC code, and collisional effects on fast electron generation and transport in fast ignition are investigated. In the collisional case, initially thermal electrons are heated up to a few hundred keV due to direct energy transfer by electron-electron collision, and they are also heated up to MeV by Joule heating induced by electron-ion scattering. Thus the number of low energy component of fast electrons increase than that in the collisionless case
Study of fast electron generation using multi beam of LFEX-class laser
Fast Ignition Realization Experiment project phase-I (FIREX-I) is being performed at Institute of Laser Engineering, Osaka University. In this project, the four-beam bundled high-energy Petawatt laser (LFEX) is being operated. LFEX laser provides great multi-beam irradiation flexibility, with the possibility of arrange the pulses in temporal sequence, spatially separate them in distinct spots of focus them in a single spot. In this paper, we study the two-beam interference effects on high-intensity picosecond laser-plasma interaction (LPI) by two-dimensional relativistic Particle-In-Cell simulations. The interference causes surface perturbation, which enhances laser absorption and underdense plasma generation, increasing the accelerated electron number and their slope temperature. The laser-to-electron energy conversion efficiency for two-beam interference case is suitable for Fast Ignition (FI) compared to the single beam case, but the increment of fast electron divergence leads to lower energy coupling. To optimize the target design for FI, these interference effects should be taken into consideration
Black hole radiation with high frequency dispersion
We consider one model of a black hole radiation, in which the equation of
motion of a matter field is modified to cut off high frequency modes. The
spectrum in the model has already been analytically derived in low frequency
range, which has resulted in the Planckian distributin of the Hawking
temperature. On the other hand, it has been numerically shown that its spectrum
deviates from the thermal one in high frequency range. In this paper, we
analytically derive the form of the deviation in the high frequency range. Our
result can qualitatively explain the nature of the numerically calculated
spectrum. The origin of the deviation is clarified by a simple discussion.Comment: 9 pages, 10 figures, submitted to Phys.Rev.
- …