501 research outputs found

    Pulsed neutron time-dependent intensity modulation for quasi-elastic neutron scattering spectroscopy

    Get PDF
    We propose a basic formula and demonstration for a high-resolution quasi-elastic neutron scattering (QENS) by combining the time-of-flight (TOF) method with Modulation of Intensity by Zero Effort (MIEZE) type neutron spin echo spectroscopy. The MIEZE technique has the potential to develop a unique approach to study on slow dynamics of condensed matter; however, the energy resolution is limited owing to the hypersensitivity of the MIEZE signal contrast to the echo condition, which is strongly affected by the alignment of the instruments and the sample. The narrow allowance of the optimal alignment is a major obstacle to the wide use of this technique. Combining the TOF method with MIEZE (TOF-MIEZE), the hypersensitivity of MIEZE signals is significantly alleviated with a short pulsed beam. This robustness is very useful to optimize experimental alignments and enables accurate measurements of QENS. The experimental results demonstrate the characteristic of the TOF-MIEZE technique and are well described by the formula presented in this study

    Towards a high-resolution TOF-MIEZE spectrometer with very cold neutrons

    Get PDF
    We report the first experimental test of TOF-MIEZE technique using very cold neutrons (VCNs) towards high-resolution quasi-elastic neutron scattering spectroscopy. TOF-MIEZE is a type of neutron resonance spin echo spectroscopy with a combination of the time-of-flight (TOF) method and modulation of intensity by zero effort (MIEZE). A compact MIEZE instrument was constructed at the VCN beam port at the High Flux Reactor at the Institut Laue Langevin. By accumulating individual oscillations of raw data, we observed a TOF-MIEZE signal with an effective frequency of 50 kHz in a wavelength band of 4–6 nm. The signal contrasts were 0.59 ± 0.04 and 0.29 ± 0.03 for wavelengths of 4 nm and 6 nm, respectively. The Fourier time was estimated to be 70 ns with 6 nm VCNs in the experimental set-up

    Pulsed UCN production using a Doppler shifter at J-PARC

    Get PDF
    We have constructed a Doppler-shifter-type pulsed ultra-cold neutron (UCN) source at the Materials and Life Science Experiment Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). Very-cold neutrons (VCNs) with 136-m/s\mathrm{m/s} velocity in a neutron beam supplied by a pulsed neutron source are decelerated by reflection on a m=10 wide-band multilayer mirror, yielding pulsed UCN. The mirror is fixed to the tip of a 2,000-rpm rotating arm moving with 68-m/s\mathrm{m/s} velocity in the same direction as the VCN. The repetition frequency of the pulsed UCN is 8.33 Hz8.33~\mathrm{Hz} and the time width of the pulse at production is 4.4 ms4.4~\mathrm{ms}. In order to increase the UCN flux, a supermirror guide, wide-band monochromatic mirrors, focus guides, and a UCN extraction guide have been newly installed or improved. The 1 MW1~\mathrm{MW}-equivalent count rate of the output neutrons with longitudinal wavelengths longer than 58 nm58~\mathrm{nm} is 1.6×102 cps1.6 \times 10^{2}~\mathrm{cps}, while that of the true UCNs is 80 cps80~\mathrm{cps}. The spatial density at production is 1.4 UCN/cm31.4~\mathrm{UCN/cm^{3}}. This new UCN source enables us to research and develop apparatuses necessary for the investigation of the neutron electric dipole moment (nEDM).Comment: 32 pages, 15 fugures. A grammatical error was fixe

    Effects of bronchodilators on dynamic hyperinflation following hyperventilation in patients with COPD

    Get PDF
    ‘The definitive version is available at www.blackwell-synergy.com '.ArticleRespirology. 12(1): 93-99 (2007)journal articl

    Experimental Signature of Medium Modifications for rho and omega Mesons in the 12 GeV p + A Reactions

    Full text link
    The invariant mass spectra of e+e- pairs produced in 12-GeV proton-induced nuclear reactions are measured at the KEK Proton-Synchrotron. On the low-mass side of the omega meson peak, a significant enhancement over the known hadronic sources has been observed. The mass spectra, including the excess, are well reproduced by a model that takes into account the density dependence of the vector meson mass modification, as theoretically predicted.Comment: 4 pages, 3 figures, Version accepted for Physical Review Lette
    corecore