8,266 research outputs found

    On the limits of measuring the bulge and disk properties of local and high-redshift massive galaxies

    Full text link
    A considerable fraction of the massive quiescent galaxies at \emph{z} β‰ˆ\approx 2, which are known to be much more compact than galaxies of comparable mass today, appear to have a disk. How well can we measure the bulge and disk properties of these systems? We simulate two-component model galaxies in order to systematically quantify the effects of non-homology in structures and the methods employed. We employ empirical scaling relations to produce realistic-looking local galaxies with a uniform and wide range of bulge-to-total ratios (B/TB/T), and then rescale them to mimic the signal-to-noise ratios and sizes of observed galaxies at \emph{z} β‰ˆ\approx 2. This provides the most complete set of simulations to date for which we can examine the robustness of two-component decomposition of compact disk galaxies at different B/TB/T. We confirm that the size of these massive, compact galaxies can be measured robustly using a single S\'{e}rsic fit. We can measure B/TB/T accurately without imposing any constraints on the light profile shape of the bulge, but, due to the small angular sizes of bulges at high redshift, their detailed properties can only be recovered for galaxies with B/TB/T \gax\ 0.2. The disk component, by contrast, can be measured with little difficulty

    Systematic {\em ab initio} study of the phase diagram of epitaxially strained SrTiO3_3

    Full text link
    We use density-functional theory with the local-density approximation to study the structural and ferroelectric properties of SrTiO3_3 under misfit strains. Both the antiferrodistortive (AFD) and ferroelectric (FE) instabilities are considered. The rotation of the oxygen octahedra and the movement of the atoms are fully relaxed within the constraint of a fixed in-plane lattice constant. We find a rich misfit strain-induced phase transition sequence and is obtained only when the AFD distortion is taken into account. We also find that compressive misfit strains induce ferroelectricity in the tetragonal low temperature phase only whilst tensile strains induce ferroelectricity in the orthorhombic phases only. The calculated FE polarization for both the tetragonal and orthorhombic phases increases monotonically with the magnitude of the strains. The AFD rotation angle of the oxygen octahedra in the tetragonal phase increases dramatically as the misfit strain goes from the tensile to compressive strain region whilst it decreases slightly in the orthorhombic (FO4) phase. This reveals why the polarization in the epitaxially strained SrTiO3_3 would be larger when the tensile strain is applied, since the AFD distortion is found to reduce the FE instability and even to completely suppress it in the small strain region. Finally, our analysis of the average polar distortion and the charge density distribution suggests that both the Ti-O and Sr-O layers contribute significantly to the FE polarization
    • …
    corecore