166 research outputs found
cDNA cloning and characterization of tryptophan synthase alpha subunit from Polygonum tinctorium
Polygonum tinctorium is a cultivated plant that produces indigo, a natural blue dye. Its leaves contain a large amount of indican (indoxyl-beta-D-glucoside), a colorless precursor of indigo. The enzyme beta-glucosidase, which degrades indican, is present in leaf cells. If the leaves ar
e scratched because of some external factors, indican is enzymatically degraded into indoxyl and glucose. Because of the chemical instability of indoxyl, it is immediately oxidized to indigo by atmospheric oxygen. Beta-glucosidase is located in chloroplasts, whereas the substrate indican is stored in vacuoles. Therefore, indigo is only produced if leaf cells are physically broken. The insoluble indigo may have a negative effect on infectious fungi and bacteria as well as on invasive insects and other animals. We hypothesize that the physiological role of indican as a secondary metabolite is of a defense system against predators. In a previous study, we have shown that indican is synthesized from indoxyl and UDP-glucose by the catalysis of UDP-glucosyltransferase. The substrate indoxyl is probably produced by the hydroxylation of indole catalyzed by cytochrome P450. Indole is an intermediate product in tryptophan syn thesis, which is the final step of
the shikimic acid pathway, a primary metabolic pathway. The tryptophan synthase consists of four subunits: two alpha subunits (TSA) and two beta subunits (TSB). Only TSA catalyzes the synthetic reaction of indole. Subsequently, indole is converted to tryptophan by the action of TSB. The purpose of this study is to uncover the complete indican synthetic pathway and to provide insight into the switching mechanism from primary to secondary metabolism. Here, we report on the cDNA cloning, expression, and characterization of TSA from P. tinctorium. Transcriptome analysis using mRNA from P. tinctorium leaf tissue resulted in a one-fragment sequence that has homology with sequences from other plant TSAs. Based on this sequence, the RACE method was used to get the complete length of the TSA cDNA. The obtained cDNA consisted of 1,469 bp encoding a polypeptide of 315 amino acids. The primary structure contained the consensus sequences of TSAs and the regions for interaction with beta subunits. P. tinctorium TSA, which we named as ptTSA1, showed high homology to some
enzymes from plants; this was the case particularly with TSA from Isatis tinctoria, another indigo plant, which showed 95.7% homology to ptTSA1. To analyze the properties and functions of ptTSA1, the recombinant protein was expressed in Escherichia coli. In addition, the ptTSA1 cDNA was used to examine whether ptTSA1 could complement a TSA deletion in E. coli. ptTSA1 protein expression and mRNA levels in various tissues of P. tinctorium were examined by the Western blot analysis and semi-quantitative RT-PCR. These expression patterns were also compared with those of TSBs. Here, we will further discuss regarding the analysis
of ptTSA1 and the interaction between TSA and TSB
Identification of Lck-derived peptides applicable to anti-cancer vaccine for patients with human leukocyte antigen-A3 supertype alleles
The identification of peptide vaccine candidates to date has been focused on human leukocyte antigen (HLA)-A2 and -A24 alleles. In this study, we attempted to identify cytotoxic T lymphocyte (CTL)-directed Lck-derived peptides applicable to HLA-A11+, -A31+, or -A33+ cancer patients, because these HLA-A alleles share binding motifs, designated HLA-A3 supertype alleles, and because the Lck is preferentially expressed in metastatic cancer. Twenty-one Lck-derived peptides were prepared based on the binding motif to the HLA-A3 supertype alleles. They were first screened for their recognisability by immunoglobulin G (IgG) in the plasma of prostate cancer patients, and the selected candidates were subsequently tested for their potential to induce peptide-specific CTLs from peripheral blood mononuclear cells of HLA-A3 supertype+ cancer patients. As a result, four Lck peptides were frequently recognised by IgGs, and three of them โ Lck90โ99, Lck449โ458, and Lck450โ458 โ efficiently induced peptide-specific and cancer-reactive CTLs. Their cytotoxicity towards cancer cells was mainly ascribed to HLA class I-restricted and peptide-specific CD8+ T cells. These results indicate that these three Lck peptides are applicable to HLA-A3 supertype+ cancer patients, especially those with metastasis. This information could facilitate the development of peptide-based anti-cancer vaccine for patients with alleles other than HLA-A2 and -A24
Adipose Inflammation Initiates Recruitment of Leukocytes to Mouse Femoral Artery: Role of Adipo-Vascular Axis in Chronic Inflammation
Background: Although inflammation within adipose tissues is known to play a role in metabolic syndrome, the causative connection between inflamed adipose tissue and atherosclerosis is not fully understood. In the present study, we examined the direct effects of adipose tissue on macro-vascular inflammation using intravital microscopic analysis of the femoral artery after adipose tissue transplantation. Methods and Results: We obtained subcutaneous (SQ) and visceral (VIS) adipose tissues from C57BL/6 mice fed normal chow (NC) or a high fat diet (HF), then transplanted the tissues into the perivascular area of the femoral artery of recipient C57/BL6 mice. Quantitative intravital microscopic analysis revealed an increase in adherent leukocytes after adipose tissue transplantation, with VIS found to induce significantly more leukocyte accumulation as compared to SQ. Moreover, adipose tissues from HF fed mice showed significantly more adhesion to the femoral artery. Simultaneous flow cytometry demonstrated upregulation of CD11b on peripheral granulocyte and monocytes after adipose tissue transplantation. We also observed dominant expressions of the inflammatory cytokine IL-6, and chemokines MCP-1 and MIP-1b in the stromal vascular fraction (SVF) of these adipose tissues as well as sera of recipient mice after transplantation. Finally, massive accumulations of pro-inflammatory and dendritic cells were detected in mice with VIS transplantation as compared to SQ, as well as in HF mice as compared to those fed NC
Characteristics of the Alternative Phenotype of Microglia/Macrophages and its Modulation in Experimental Gliomas
Microglia (brain resident macrophages) accumulate in malignant gliomas and instead of initiating the anti-tumor response, they switch to a pro-invasive phenotype, support tumor growth, invasion, angiogenesis and immunosuppression by release of cytokines/chemokines and extracellular matrix proteases. Using immunofluorescence and flow cytometry, we demonstrate an early accumulation of activated microglia followed by accumulation of macrophages in experimental murine EGFP-GL261 gliomas. Those cells acquire the alternative phenotype, as evidenced by evaluation of the production of ten pro/anti-inflammatory cytokines and expression profiling of 28 genes in magnetically-sorted CD11b+ cells from tumor tissues. Furthermore, we show that infiltration of implanted gliomas by amoeboid, Iba1-positive cells can be reduced by a systematically injected cyclosporine A (CsA) two or eight days after cell inoculation. The up-regulated levels of IL-10 and GM-CSF, increased expression of genes characteristic for the alternative and pro-invasive phenotype (arg-1, mt1-mmp, cxcl14) in glioma-derived CD11b+ cells as well as enhanced angiogenesis and tumor growth were reduced in CsA-treated mice. Our findings define for the first time kinetics and biochemical characteristics of glioma-infiltrating microglia/macrophages. Inhibition of the alternative activation of tumor-infiltrating macrophages significantly reduced tumor growth. Thus, blockade of microglia/macrophage infiltration and their pro-invasive functions could be a novel therapeutic strategy in malignant gliomas
Increased Monocyte Turnover from Bone Marrow Correlates with Severity of SIV Encephalitis and CD163 Levels in Plasma
Cells of the myeloid lineage are significant targets for human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in monkeys. Monocytes play critical roles in innate and adaptive immunity during inflammation. We hypothesize that specific subsets of monocytes expand with AIDS and drive central nervous system (CNS) disease. Additionally, there may be expansion of cells from the bone marrow through blood with subsequent macrophage accumulation in tissues driving pathogenesis. To identify monocytes that recently emigrated from bone marrow, we used 5-bromo-2โฒ-deoxyuridine (BrdU) labeling in a longitudinal study of SIV-infected CD8+ T lymphocyte depleted macaques. Monocyte expansion and kinetics in blood was assessed and newly migrated monocyte/macrophages were identified within the CNS. Five animals developed rapid AIDS with differing severity of SIVE. The percentages of BrdU+ monocytes in these animals increased dramatically, early after infection, peaking at necropsy where the percentage of BrdU+ monocytes correlated with the severity of SIVE. Early analysis revealed changes in the percentages of BrdU+ monocytes between slow and rapid progressors as early as 8 days and consistently by 27 days post infection. Soluble CD163 (sCD163) in plasma correlated with the percentage of BrdU+ monocytes in blood, demonstrating a relationship between monocyte activation and expansion with disease. BrdU+ monocytes/macrophages were found within perivascular spaces and SIVE lesions. The majority (80โ90%) of the BrdU+ cells were Mac387+ that were not productively infected. There was a minor population of CD68+BrdU+ cells (<10%), very few of which were infected (<1% of total BrdU+ cells). Our results suggest that an increased rate of monocyte recruitment from bone marrow into the blood correlates with rapid progression to AIDS, and the magnitude of BrdU+ monocytes correlates with the severity of SIVE
Hepatitis C Virus Infection Suppresses the Interferon Response in the Liver of the Human Hepatocyte Chimeric Mouse
BACKGROUND AND AIMS: Recent studies indicate that hepatitis C virus (HCV) can modulate the expression of various genes including those involved in interferon signaling, and up-regulation of interferon-stimulated genes by HCV was reported to be strongly associated with treatment outcome. To expand our understanding of the molecular mechanism underlying treatment resistance, we analyzed the direct effects of interferon and/or HCV infection under immunodeficient conditions using cDNA microarray analysis of human hepatocyte chimeric mice. METHODS: Human serum containing HCV genotype 1b was injected into human hepatocyte chimeric mice. IFN-ฮฑ was administered 8 weeks after inoculation, and 6 hours later human hepatocytes in the mouse livers were collected for microarray analysis. RESULTS: HCV infection induced a more than 3-fold change in the expression of 181 genes, especially genes related to Organismal Injury and Abnormalities, such as fibrosis or injury of the liver (Pโ=โ5.90E-16โผ3.66E-03). IFN administration induced more than 3-fold up-regulation in the expression of 152 genes. Marked induction was observed in the anti-fibrotic chemokines such as CXCL9, suggesting that IFN treatment might lead not only to HCV eradication but also prevention and repair of liver fibrosis. HCV infection appeared to suppress interferon signaling via significant reduction in interferon-induced gene expression in several genes of the IFN signaling pathway, including Mx1, STAT1, and several members of the CXCL and IFI families (Pโ=โ6.0E-12). Genes associated with Antimicrobial Response and Inflammatory Response were also significantly repressed (Pโ=โ5.22ร10(-10)โผ1.95ร10(-2)). CONCLUSIONS: These results provide molecular insights into possible mechanisms used by HCV to evade innate immune responses, as well as novel therapeutic targets and a potential new indication for interferon therapy
Expression of APOBEC3G/3F and G-to-A Hypermutation Levels in HIV-1-Infected Children with Different Profiles of Disease Progression
OBJECTIVE: Increasing evidence has accumulated showing the role of APOBEC3G (A3G) and 3F (A3F) in the control of HIV-1 replication and disease progression in humans. However, very few studies have been conducted in HIV-infected children. Here, we analyzed the levels of A3G and A3F expression and induced G-to-A hypermutation in a group of children with distinct profiles of disease progression. METHODOLOGY/PRINCIPAL FINDINGS: Perinatally HIV-infected children were classified as progressors or long-term non-progressors according to criteria based on HIV viral load and CD4 T-cell counts over time. A group of uninfected control children were also enrolled in the study. PBMC proviral DNA was assessed for G-to-A hypermutation, whereas A3G and A3F mRNA were isolated and quantified through TaqManยฎ real-time PCR. No correlation was observed between disease progression and A3G/A3F expression or hypermutation levels. Although all children analyzed showed higher expression levels of A3G compared to A3F (an average fold of 5 times), a surprisingly high A3F-related hypermutation rate was evidenced in the cohort, irrespective of the child's disease progression profile. CONCLUSION: Our results contribute to the current controversy as to whether HIV disease progression is related to A3G/A3F enzymatic activity. To our knowledge, this is the first study analyzing A3G/F expression in HIV-infected children, and it may pave the way to a better understanding of the host factors governing HIV disease in the pediatric setting
- โฆ