3 research outputs found
Autonomous Quantum Processing Unit: What does it take to construct a self-contained model for quantum computation?
Computation is an input-output process, where a program encoding a problem to
be solved is inserted into a machine that outputs a solution. Whilst a
formalism for quantum Turing machines which lifts this input-output feature
into the quantum domain has been developed, this is not how quantum computation
is physically conceived. Usually, such a quantum computation is enacted by the
manipulation of macroscopic control interactions according to a program
executed by a classical system. To understand the fundamental limits of
computation, especially in relation to the resources required, it is pivotal to
work with a fully self-contained description of a quantum computation where
computational and thermodynamic resources are not be obscured by the classical
control. To this end, we answer the question; "Can we build a physical model
for quantum computation that is fully autonomous?", i.e., where the program to
be executed as well as the control are both quantum. We do so by developing a
framework that we dub the autonomous Quantum Processing Unit (aQPU). This
machine, consisting of a timekeeping mechanism, instruction register and
computational system allows an agent to input their problem and receive the
solution as an output, autonomously. Using the theory of open quantum systems
and results from the field of quantum clocks we are able to use the aQPU as a
formalism to investigate relationships between the thermodynamics, complexity,
speed and fidelity of a desired quantum computation.Comment: 21 + 18 pages, 1 table, 6 figures. Comments welcom
The Impact of Imperfect Timekeeping on Quantum Control
In order to unitarily evolve a quantum system, an agent requires knowledge of
time, a parameter which no physical clock can ever perfectly characterise. In
this letter, we study how limitations on acquiring knowledge of time impact
controlled quantum operations in different paradigms. We show that the quality
of timekeeping an agent has access to limits the gate complexity they are able
to achieve within circuit-based quantum computation. It also exponentially
impacts state preparation for measurement-based quantum computation. Another
area where quantum control is relevant is quantum thermodynamics. In that
context, we show that cooling a qubit can be achieved using a timer of
arbitrary quality for control: timekeeping error only impacts the rate of
cooling and not the achievable temperature. Our analysis combines techniques
from the study of autonomous quantum clocks and the theory of quantum channels
to understand the effect of imperfect timekeeping on controlled quantum
dynamics.Comment: 5 + 7 pages, 2 figure
DQC1 as an Open Quantum System
The DQC1 complexity class, or power of one qubit model, is examined as an
open quantum system. We study the dynamics of a register of qubits carrying out
a DQC1 algorithm and show that, for any algorithm in the complexity class, the
evolution of the logical qubit can be described as an open quantum system
undergoing a dynamics which is unital. Unital quantum channels respect the
Tasaki-Crooks fluctuation theorem and we demonstrate how this is captured by
the thermodynamics of the logical qubit. As an application, we investigate the
equilibrium and non-equilibrium thermodynamics of the DQC1 trace estimation
algorithm. We show that different computational inputs, i.e. different traces
being estimated, lead to different energetic exchanges across the register of
qubits and that the temperature of the logical qubit impacts the magnitude of
fluctuations experienced and quality of the algorithm.Comment: 14 pages, 4 figure