3 research outputs found

    Rethinking Efficiency and Redundancy in Training Large-scale Graphs

    Full text link
    Large-scale graphs are ubiquitous in real-world scenarios and can be trained by Graph Neural Networks (GNNs) to generate representation for downstream tasks. Given the abundant information and complex topology of a large-scale graph, we argue that redundancy exists in such graphs and will degrade the training efficiency. Unfortunately, the model scalability severely restricts the efficiency of training large-scale graphs via vanilla GNNs. Despite recent advances in sampling-based training methods, sampling-based GNNs generally overlook the redundancy issue. It still takes intolerable time to train these models on large-scale graphs. Thereby, we propose to drop redundancy and improve efficiency of training large-scale graphs with GNNs, by rethinking the inherent characteristics in a graph. In this paper, we pioneer to propose a once-for-all method, termed DropReef, to drop the redundancy in large-scale graphs. Specifically, we first conduct preliminary experiments to explore potential redundancy in large-scale graphs. Next, we present a metric to quantify the neighbor heterophily of all nodes in a graph. Based on both experimental and theoretical analysis, we reveal the redundancy in a large-scale graph, i.e., nodes with high neighbor heterophily and a great number of neighbors. Then, we propose DropReef to detect and drop the redundancy in large-scale graphs once and for all, helping reduce the training time while ensuring no sacrifice in the model accuracy. To demonstrate the effectiveness of DropReef, we apply it to recent state-of-the-art sampling-based GNNs for training large-scale graphs, owing to the high precision of such models. With DropReef leveraged, the training efficiency of models can be greatly promoted. DropReef is highly compatible and is offline performed, benefiting the state-of-the-art sampling-based GNNs in the present and future to a significant extent.Comment: 11 Page

    HiHGNN: Accelerating HGNNs through Parallelism and Data Reusability Exploitation

    Full text link
    Heterogeneous graph neural networks (HGNNs) have emerged as powerful algorithms for processing heterogeneous graphs (HetGs), widely used in many critical fields. To capture both structural and semantic information in HetGs, HGNNs first aggregate the neighboring feature vectors for each vertex in each semantic graph and then fuse the aggregated results across all semantic graphs for each vertex. Unfortunately, existing graph neural network accelerators are ill-suited to accelerate HGNNs. This is because they fail to efficiently tackle the specific execution patterns and exploit the high-degree parallelism as well as data reusability inside and across the processing of semantic graphs in HGNNs. In this work, we first quantitatively characterize a set of representative HGNN models on GPU to disclose the execution bound of each stage, inter-semantic-graph parallelism, and inter-semantic-graph data reusability in HGNNs. Guided by our findings, we propose a high-performance HGNN accelerator, HiHGNN, to alleviate the execution bound and exploit the newfound parallelism and data reusability in HGNNs. Specifically, we first propose a bound-aware stage-fusion methodology that tailors to HGNN acceleration, to fuse and pipeline the execution stages being aware of their execution bounds. Second, we design an independency-aware parallel execution design to exploit the inter-semantic-graph parallelism. Finally, we present a similarity-aware execution scheduling to exploit the inter-semantic-graph data reusability. Compared to the state-of-the-art software framework running on NVIDIA GPU T4 and GPU A100, HiHGNN respectively achieves an average 41.5×\times and 8.6×\times speedup as well as 106×\times and 73×\times energy efficiency with quarter the memory bandwidth of GPU A100

    Transcriptome Analysis of Immune Responses and Metabolic Regulations of Chinese Soft-Shelled Turtle (Pelodiscus sinensis) against Edwardsiella tarda Infection

    No full text
    The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important aquatic species in southern China that is threatened by many serious diseases. Edwardsiella tarda is one of the highly pathogenic bacteria that cause the white abdominal shell disease. Yet, little is known about the immune and metabolic responses of the Chinese soft-shelled turtle against E. tarda infection. In the paper, gene expression profiles in the turtle liver were obtained to study the immune responses and metabolic regulations induced by E. tarda infection using RNA sequencing. A total of 3908 differentially expressed unigenes between the experimental group and the control group were obtained by transcriptome analysis, among them, were the significantly upregulated unigenes and downregulated unigenes 2065 and 1922, respectively. Further annotation and analysis revealed that the DEGs were mainly enriched in complement and coagulation cascades, phagosome, and steroid hormone biosynthesis pathways, indicating that they were mainly associated with defense mechanisms in the turtle liver against E. tarda four days post infection. For the first time, we reported on the gene profile of anti-E. tarda response in the soft-shelled turtle, and our research might provide valuable data to support further study on anti-E. tarda defense mechanisms in turtles
    corecore