23,051 research outputs found

    The energy spectrum symmetry of Heisenberg model in Fock space

    Full text link
    We prove strictly that one dimension spin 1/2 Heisenberg model has a symmetry of energy spectrum between its subspace nn and the subspace L−nL-n of the Fock space. Our proof is completed by introducing two general quantum operations. One is a flip operation of spin direction and another is a mirror reflection of spin sites.Comment: Revising version, 7 preprint pages, no figures; Published version contains some revisions in Languag

    Non-transferable unidirectional proxy re-encryption scheme for secure social cloud storage sharing

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Proxy re-encryption (PRE), introduced by Blaze et al. in 1998, allows a semi-trusted proxy with the re-encryption key to translatea ciphertext under the delegator into another ciphertext, which can be decrypted by the delegatee. In this process, the proxy is required to know nothing about the plaintext. Many PRE schemes have been proposed so far, however until now almost all the unidirectional PRE schemes suffer from the transferable property. That is, if the proxy and a set of delegatees collude, they can re-delegate the delegator's decryption rights to the other ones, while the delegator has no agreement on this. Thus designing non-transferable unidirectional PRE scheme is an important open research problem in the field. In this paper, we tackle this open problem by using the composite order bilinear pairing. Concretely, we design a non-transferable unidirectional PRE scheme based on Hohenberger et al.'s unidirectional PRE scheme. Furthermore, we discuss our scheme's application to secure cloud storage, especially for sharing private multimedia content for social cloud storage users.Peer ReviewedPostprint (author's final draft

    Device-free Localization using Received Signal Strength Measurements in Radio Frequency Network

    Full text link
    Device-free localization (DFL) based on the received signal strength (RSS) measurements of radio frequency (RF)links is the method using RSS variation due to the presence of the target to localize the target without attaching any device. The majority of DFL methods utilize the fact the link will experience great attenuation when obstructed. Thus that localization accuracy depends on the model which describes the relationship between RSS loss caused by obstruction and the position of the target. The existing models is too rough to explain some phenomenon observed in the experiment measurements. In this paper, we propose a new model based on diffraction theory in which the target is modeled as a cylinder instead of a point mass. The proposed model can will greatly fits the experiment measurements and well explain the cases like link crossing and walking along the link line. Because the measurement model is nonlinear, particle filtering tracing is used to recursively give the approximate Bayesian estimation of the position. The posterior Cramer-Rao lower bound (PCRLB) of proposed tracking method is also derived. The results of field experiments with 8 radio sensors and a monitored area of 3.5m 3.5m show that the tracking error of proposed model is improved by at least 36 percent in the single target case and 25 percent in the two targets case compared to other models.Comment: This paper has been withdrawn by the author due to some mistake
    • …
    corecore