37 research outputs found

    Electron Doping of a Double Perovskite Flat-band System

    Full text link
    Electronic structure calculations indicate that the Sr2FeSbO6 double perovskite has a flat-band set just above the Fermi level that includes contributions from ordinary sub-bands with weak kinetic electron hopping plus a flat sub-band that can be attributed to the lattice geometry and orbital interference. To place the Fermi energy in that flat band, electron doped samples with formulas Sr2-xLaxFeSbO6 (0 < x < 0.3) were synthesized and their magnetism and ambient temperature crystal structures determined by high-resolution synchrotron X-ray powder diffraction. All materials appear to display an antiferromagnetic-like maximum in the magnetic susceptibility, but the dominant spin coupling evolves from antiferromagnetic to ferromagnetic on electron doping. Which of the three sub-bands or combinations is responsible for the behavior has not been determined.Comment: 31 pages, 8 figure

    Simultaneous imaging of dopants and free charge carriers by STEM-EELS

    Full text link
    Doping inhomogeneities in solids are not uncommon, but their microscopic observation and understanding are limited due to the lack of bulk-sensitive experimental techniques with high-enough spatial and spectral resolution. Here, we demonstrate nanoscale imaging of both dopants and free charge carriers in La-doped BaSnO3 (BLSO) using high-resolution electron energy-loss spectroscopy (EELS). By analyzing both high- and low-energy excitations in EELS, we reveal chemical and electronic inhomogeneities within a single BLSO nanocrystal. The inhomogeneous doping leads to distinctive localized infrared surface plasmons, including a novel plasmon mode that is highly confined between high- and low-doping regions. We further quantify the carrier density, effective mass, and dopant activation percentage from EELS data and transport measurements on the bulk single crystals of BLSO. These results represent a unique way of studying heterogeneities in solids, understanding structure-property relationships at the nanoscale, and opening the way to leveraging nanoscale doping texture in the design of nanophotonic devices

    Is La3Ni2O6.5 a Bulk Superconducting Nickelate?

    Full text link
    Superconducting states onsetting at moderately high temperatures have been observed in epitaxially-stabilized RENiO2-based thin films. However, recently it has also been reported that superconductivity at high temperatures is observed in bulk La3Ni2O7-{\delta} at high pressure, opening further possibilities for study. Here we report the reduction profile of La3Ni2O7 in a stream of 5% H2/Ar gas and the isolation of the metastable intermediate phase La3Ni2O6.45, which is based on Ni2+. Although this reduced phase does not superconduct at ambient or high pressures, it offers insights into the Ni-327 system and encourages the future study of nickelates as a function of oxygen content

    Disorder-induced excitation continuum in a spin-1/2 cobaltate on a triangular lattice

    Full text link
    A spin-1/2 triangular-lattice antiferromagnet is a prototypical frustrated quantum magnet, which exhibits remarkable quantum many-body effects that arise from the synergy between geometric spin frustration and quantum fluctuations. It can host quantum frustrated magnetic topological phenomena like quantum spin liquid (QSL) states, highlighted by the presence of fractionalized quasiparticles within a continuum of magnetic excitations. In this work, we use neutron scattering to study CoZnMo3_3O8_8, which has a triangular lattice of Jeff = 1/2 Co2+ ions with octahedral coordination. We found a wave-vector-dependent excitation continuum at low energy that disappears with increasing temperature. Although these excitations are reminiscent of a spin excitation continuum in a QSL state, their presence in CoZnMo3_3O8_8 originates from magnetic intersite disorder-induced dynamic spin states with peculiar excitations. Our results, therefore, give direct experimental evidence for the presence of a disorder-induced spin excitation continuum

    The Hidden Hydroxide in BaNiO3 Single Crystals Grown from a KOH Flux

    Full text link
    Hexagonal oxide perovskites with one-dimensional chains of face-sharing MO6 octahedra are of enduring interest. Specifically, the hexagonal perovskite BaNiO3, prepared via non-ceramic approaches, acts as a highly functional catalyst for the oxygen-evolution reaction (OER) in alkaline media, with numerous studies focusing on this behavior, while its fundamental structural and physical properties have been somewhat overlooked. The current work is intiated by the observation of contrasting magnetic properties of BaNiO3 synthesized via KOH flux growth and high O2 pressure ceramic synthesis. To shed light on this difference, we have performed a series of rigorous analyses and found that the KOH flux-grown crystals made in open-air are actually a wet form of BaNiO3 that can be dried upon annealing in O2 flow but will then slowly degrade if stored under a condition where the O2 partial pressure is not high enough. Therefore, the present work not only provides insightful information to unveil a previously unknown aspect of the OER catalyst BaNiO3, but also rings a bell that the hidden hydroxide principle described here may also be applied to other hexagonal perovskite oxides prepared in wet conditions.Comment: 21 pages, 6 figure

    Symmetry breaking and ascending in the magnetic kagome metal FeGe

    Full text link
    Spontaneous symmetry breaking-the phenomenon where an infinitesimal perturbation can cause the system to break the underlying symmetry-is a cornerstone concept in the understanding of interacting solid-state systems. In a typical series of temperature-driven phase transitions, higher temperature phases are more symmetric due to the stabilizing effect of entropy that becomes dominant as the temperature is increased. However, the opposite is rare but possible when there are multiple degrees of freedom in the system. Here, we present such an example of a symmetry-ascending phenomenon in a magnetic kagome metal FeGe by utilizing neutron Larmor diffraction and Raman spectroscopy. In the paramagnetic state at 460K, we confirm that the crystal structure is indeed hexagonal kagome lattice. On cooling to TN, the crystal structure changes from hexagonal to monoclinic with in-plane lattice distortions on the order of 10^(-4) and the associated splitting of the double degenerate phonon mode of the pristine kagome lattice. Upon further cooling to TCDW, the kagome lattice shows a small negative thermal expansion, and the crystal structure becomes more symmetric gradually upon further cooling. Increasing the crystalline symmetry upon cooling is unusual, it originates from an extremely weak structural instability that coexists and competes with the CDW and magnetic orders. These observations are against the expectations for a simple model with a single order parameter, hence can only be explained by a Landau free energy expansion that takes into account multiple lattice, charge, and spin degrees of freedom. Thus, the determination of the crystalline lattice symmetry as well as the unusual spin-lattice coupling is a first step towards understanding the rich electronic and magnetic properties of the system and sheds new light on intertwined orders where the lattice degree of freedom is no longer dominant
    corecore