65 research outputs found
Carboxymethylcellulose reinforced starch films and rapid detection of spoiled beverages
The integrity of the packaging of a liquid foodstuff makes it difficult to detect spoilage. Therefore, it is important to develop a sensitive, fast and real-time material for liquid food detection. CMC, as lignocellulose derivatives and starch are widely used in the food industry. In this study, starch films with pH-responsive properties are successfully prepared from full-component starch and corn amylopectin (CA) by adding CMC. The effects of CMC on the mechanical properties, morphology characteristics, physical and chemical structures, stability and pH responsiveness of the starch films are analyzed. The starch/CMC-1.0 g composite films display good electrical conductivity and reduce the resistance of the composite film by two orders of magnitude. The composite films have pH response ability; in the simulation of orange juice spoilage experiment, the CA/CMC composite film has a more sensitive current response and was more suitable for the application to liquid food quality detection. Additionally, the starch/CMC composite films have potential applications for rapid detection and real-time monitoring of the safety of liquid food
Crop Diversity for Yield Increase
Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean – either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER) of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand
Association between fibrinogen‐to‐albumin ratio and functional prognosis of 3 months in patients with acute ischemic stroke after intravenous thrombolysis
Abstract Background The presence of high fibrinogen and low albumin levels in serum is associated with a negative prognosis in acute ischemic stroke (AIS). Fibrinogen‐to‐albumin ratio (FAR), a new inflammatory biomarker, may provide better prognostic insights in patients with AIS than separate evaluation of fibrinogen or albumin. The objective of this investigation is to examine the correlation between FAR and 3‐month functional prognosis after intravenous thrombolysis (IVT) in AIS patients. Methods The retrospective study recruited AIS patients who received IVT from June 2014 to December 2021. The 3‐month functional prognosis was assessed using the Modified Rankin Scale (mRS). A mRS score of ≤2 indicated a good outcome, whereas a mRS score of >2 suggested a poor outcome. Results A total of 591 AIS patients who underwent IVT were included and 147 patients (24.9 %) had a poor outcome. Among the 102 pairs of patients after propensity score matching, there was a significant association between FAR and 3‐month prognosis (adjusted OR, 1.19; 95% CI, 1.03–1.38; p = .020). The optimal FAR cutoff value was found to be 7.57, and even after stratifying patients based on this value, we still observed a significant correlation between high FAR level and poor outcome (adjusted OR, 2.08; 95% CI, 1.28–3.40; p = .003). Conclusions FAR may serve as a prospective biomarker of predicting 3‐month prognosis in AIS patients after IVT
Preparing Colour-Tunable Tannic Acid-Based Carbon Dots by Changing the pH Value of the Reaction System
Biomass carbon dots (CDs) have the characteristics of being green, nontoxic, inexpensive, and simple to prepare, and they can be used in luminescence-related fields. In this study, red, green, and blue luminescent CDs were synthesised by a simple hydrothermal method under alkaline, neutral, and acidic conditions using TA as carbon source and o-phthalaldehyde as blend. The unique optical properties of these CDs are due to the differences in their degrees of conjugation, which can be controlled by the pH value of the reaction system. These three kinds of biomass CDs have good applications in light-emitting diodes (LEDs). By mixing biomass CDs with epoxy resin, warm, and cold white LEDs with Commission Internationale de l’Elcairage (CIE) coordinates (0.35, 0.36) were successfully constructed on extremely stable multicolour CDs. This study shows that these biomass CDs are a promising material for white LED lighting
- …