35 research outputs found
Multi-Label Classifier Chains for Bird Sound
Bird sound data collected with unattended microphones for automatic surveys,
or mobile devices for citizen science, typically contain multiple
simultaneously vocalizing birds of different species. However, few works have
considered the multi-label structure in birdsong. We propose to use an ensemble
of classifier chains combined with a histogram-of-segments representation for
multi-label classification of birdsong. The proposed method is compared with
binary relevance and three multi-instance multi-label learning (MIML)
algorithms from prior work (which focus more on structure in the sound, and
less on structure in the label sets). Experiments are conducted on two
real-world birdsong datasets, and show that the proposed method usually
outperforms binary relevance (using the same features and base-classifier), and
is better in some cases and worse in others compared to the MIML algorithms.Comment: 6 pages, 1 figure, submission to ICML 2013 workshop on bioacoustics.
Note: this is a minor revision- the blind submission format has been replaced
with one that shows author names, and a few corrections have been mad
Interpreting Recurrent and Attention-Based Neural Models: a Case Study on Natural Language Inference
Deep learning models have achieved remarkable success in natural language
inference (NLI) tasks. While these models are widely explored, they are hard to
interpret and it is often unclear how and why they actually work. In this
paper, we take a step toward explaining such deep learning based models through
a case study on a popular neural model for NLI. In particular, we propose to
interpret the intermediate layers of NLI models by visualizing the saliency of
attention and LSTM gating signals. We present several examples for which our
methods are able to reveal interesting insights and identify the critical
information contributing to the model decisions.Comment: 11 pages, 11 figures, accepted as a short paper at EMNLP 201