5 research outputs found

    Multi-Objective Joint Optimal Operation of Reservoir System and Analysis of Objectives Competition Mechanism: A Case Study in the Upper Reach of the Yangtze River

    No full text
    The multi-objective optimal operation and the joint scheduling of giant-scale reservoir systems are of great significance for water resource management; the interactions and mechanisms between the objectives are the key points. Taking the reservoir system composed of 30 reservoirs in the upper reaches of the Yangtze River as the research object, this paper constructs a multi-objective optimal operation model integrating four objectives of power generation, ecology, water supply, and shipping under the constraints of flood control to analyze the inside interaction mechanisms among the objectives. The results are as follows. (1) Compared with single power generation optimization, multi-objective optimization improves the benefits of the system. The total power generation is reduced by only 4.09% at most, but the water supply, ecology, and shipping targets are increased by 98.52%, 35.09%, and 100% at most under different inflow conditions, respectively. (2) The competition between power generation and the other targets is the most obvious; the relationship between water supply and ecology depends on the magnitude of flow required by the control section for both targets, and the restriction effect of the shipping target is limited. (3) Joint operation has greatly increased the overall benefits. Compared with the separate operation of each basin, the benefits of power generation, water supply, ecology, and shipping increased by 5.50%, 45.99%, 98.49%, and 100.00% respectively in the equilibrium scheme. This study provides a widely used method to analyze the multi-objective relationship mechanism, and can be used to guide the actual scheduling rules

    Research on the Multi-Objective Cooperative Competition Mechanism of Jinsha River Downstream Cascade Reservoirs during the Flood Season Based on Optimized NSGA-III

    No full text
    This paper analyzes the complex relationship among flood control, power generation and ecological maintenance for the four cascade reservoirs located on the lower reaches of the Jinsha River, China. A weighted flood control index is incorporated and a constraining method consisting of the combination of a constrained corridor and a penalty function is proposed. A comprehensive utilization model is established in this paper based on the objectives of flood prevention, power generation, and ecological maintenance of the downstream cascade reservoir group of the Jinsha River during flood season. In addition, based on the coalescent selection of reference points and vector angles, an optimized non-dominated sorting genetic algorithm (VA-NSGA-III) is proposed. The algorithm is applied to the constructed model to define the cooperative competition mechanisms among these three targets, resulting in a set of non-inferior scheduling schemes with more uniformity and better convergence acquired with VA-NSGA-III. The scheduling program shows that there is a non-linear competitive relationship between the power generation and ecological effects of the cascade reservoirs during flood season, and the competitiveness weakens as the power generation increases. Furthermore, when the flood control is at low risk, there exists a complex coupling relationship between competition and coordination of the flood control, power generation, and ecological maintenance. While the risk appears high, there is a competitive relationship between flood control and power generation, with flood control being in synergy with ecological maintenance

    A Practical Approach for Environmental Flow Calculation to Support Ecosystem Management in Wujiang River, China

    No full text
    To promote ecosystem protection in the Wujiang River, this paper proposes a practical approach for calculating the environmental flow. The proposed approach combines the idea of the “guarantee rate” of the flow duration curve (FDC) method and the grading idea of the Tennant method. A daily flow series of the Wujiang River was compiled from 1956 to 2019 and used to compare the effect of the proposed approach versus the traditional approaches in four selected sections along the river. The results show that the environmental flow of the Wujiang River can be divided into five levels by the T-FDC method, with a level-by-level disparity, and all levels can capture the temporal and spatial variability of river flow. Additionally, the calculated basic environmental flow process ranges between the historical minimum and second minimum monthly average flow, and the threshold width of the optimal flow is more reasonable than the Tennant method. The T-FDC method can provide technical support for Wujiang River ecosystem management and sustainable development
    corecore