94 research outputs found
Potential Energy Surface of Urea
Using MP2 methods with aug-cc-pVDZ basis set, the inversion and rotation potential energy surface (PES) of urea molecule were plotted and fitted into polynomials. Important conformations on the PES were located and characterized. Their connecting paths were examined. Both inversion and rotation energy barriers were calculated. It was showed there could exist more than one internal rotation path for a floppy molecule. The topology of the PES were characterized using graphical description and symmetry analysis
Processing of Ceramic Foams
The ceramic foams have great importance in many industry fields. This chapter introduces the processing of ceramic foams by direct foaming technology. The structure of the precursor foams which attributes the final properties of the ceramic foams is described. Two different methods for foaming the ceramic slurry, as well as the techniques for foam consolidation, are presented in detail
Photonic Memristor for Future Computing: A Perspective
Photonic computing and neuromorphic computing could address the inherent limitations of traditional von Neumann architecture and gradually invalidate Moore’s law. As photonics applications are capable of storing and processing data in an optical manner with unprecedented bandwidth and high speed, twoâ terminal photonic memristors with a remote optical control of resistive switching behaviors at defined wavelengths ensure the benefit of onâ chip integration, low power consumption, multilevel data storage, and a large variation margin, suggesting promising advantages for both photonic and neuromorphic computing. Herein, the development of photonic memristors is reviewed, as well as their application in photonic computing and emulation on optogeneticsâ modulated artificial synapses. Different photoactive materials acting as both photosensing and storage media are discussed in terms of their opticalâ tunable memory behaviors and underlying resistive switching mechanism with consideration of photogating and photovoltaic effects. Moreover, lightâ involved logic operations, systemâ level integration, and lightâ controlled artificial synaptic memristors along with improved learning tasks performance are presented. Furthermore, the challenges in the field are discussed, such as the lack of a comprehensive understanding of microscopic mechanisms under light illumination and a general constraint of inferior nearâ infrared (NIR) sensitivity.The development of photonic memristors and their application in photonic computing and emulation on optogeneticsâ modulated artificial synapses are reviewed. Photoactive materials as photosensing and storage media are discussed, considering their opticalâ tunable memory behavior and resistive switching mechanism including photogating and photovoltaic effect. Lightâ involved logic operations, system level integration, and artificial synaptic memristors along with improved learning tasks performance are presented.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153103/1/adom201900766.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153103/2/adom201900766_am.pd
Spiral Complete Coverage Path Planning Based on Conformal Slit Mapping in Multi-connected Domains
Generating a smooth and shorter spiral complete coverage path in a
multi-connected domain is an important research area in robotic cavity
machining. Traditional spiral path planning methods in multi-connected domains
involve a subregion division procedure; a deformed spiral path is incorporated
within each subregion, and these paths within the subregions are interconnected
with bridges. In intricate domains with abundant voids and irregular
boundaries, the added subregion boundaries increase the path avoidance
requirements. This results in excessive bridging and necessitates longer
uneven-density spirals to achieve complete subregion coverage. Considering that
conformal slit mapping can transform multi-connected regions into regular disks
or annuluses without subregion division, this paper presents a novel spiral
complete coverage path planning method by conformal slit mapping. Firstly, a
slit mapping calculation technique is proposed for segmented cubic spline
boundaries with corners. Then, a spiral path spacing control method is
developed based on the maximum inscribed circle radius between adjacent
conformal slit mapping iso-parameters. Lastly, the spiral path is derived by
offsetting iso-parameters. The complexity and applicability of the proposed
method are comprehensively analyzed across various boundary scenarios.
Meanwhile, two cavities milling experiments are conducted to compare the new
method with conventional spiral complete coverage path methods. The comparation
indicate that the new path meets the requirement for complete coverage in
cavity machining while reducing path length and machining time by 12.70% and
12.34%, respectively.Comment: This article has not been formally published yet and may undergo
minor content change
Effects of Lipid Regulation Using Raw and Processed Radix Polygoni Multiflori in Rats Fed a High-Fat Diet
Raw and processed Radix Polygoni Multiflori have been used in the prevention and treatment of nonalcoholic fatty liver disease (NAFLD), hyperlipidemia, and related diseases in Asian counties for centuries. The lipid regulation ability of raw and processed Poligoni Multiflori Radix were compared in high-fat diet fed rats in this research. Total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) in blood and liver tissue were all significantly higher in model rats. However, triglyceride (TG) contents increased only in liver tissue, not in the blood samples. The rats fed the high-fat diets were considered the model of type IIa hyperlipidemia and early-stage nonalcoholic fatty liver disease. Both Radix Polygoni Multiflori (RPM) and Radix Polygoni Multiflori Praeparata (RPMP) revealed TC-lowing effects, and middling doses of RPMP displayed the most significant TC-lowing effects, as indicated by blood samples. Neither RPM nor RPMP was found to reduce LDL-C in rats' blood. Nevertheless, RPM showed dose-dependent TC- and TG-lowing effects in the liver tissue samples. In conclusion, RPM showed more pronounced effects on lipid regulation in liver samples in the treatment of early-stage NAFLD. RPMP, however, displayed better effects in regulating lipids in circulating blood for the treatment of hyperlipidemia
Early transition from insulin to sulfonylureas in neonatal diabetes and follow-up: experience from China
Background: Sulfonylurea therapy can improve glycemic control and ameliorate neurodevelopmental outcomes in patients suffering from neonatal diabetes mellitus (NDM) with KCNJ11 or ABCC8 mutations. As genetic testing results are often delayed, it remains controversial whether sulfonylurea treatment should be attempted immediately at diagnosis or doctors should await genetic confirmation. Objective: This study aimed to investigate the effectiveness and safety of sulfonylurea therapy in Chinese NDM patients during infancy before genetic testing results were available. Methods: The medical records of NDM patients with their follow‐up details were reviewed and molecular genetic analysis was performed. Sulfonylurea transfer regimens were applied in patients diagnosed after May 2010, and glycemic status and side effects were evaluated in each patient. Results: There were 23 NDM patients from 22 unrelated families, 10 had KCNJ11 mutations, 3 harbored ABCC8 mutations, 1 had INS mutations, 4 had chromosome 6q24 abnormalities, 1 had a deletion at chromosome 1p36.23p36.12, and 4 had no genetic abnormality identified. Sixteen NDM infants were treated with glyburide at an average age of 49 days (range 14‐120 days) before genetic confirmation. A total of 11 of 16 (69%) were able to successfully switch to glyburide with a more stable glucose profile. The responsive glyburide dose was 0.51 ± 0.16 mg/kg/d (0.3‐0.8 mg/kg/d), while the maintenance dose was 0.30 ± 0.07 mg/kg/d (0.2‐0.4 mg/kg/d). No serious adverse events were reported. Conclusions: Molecular genetic diagnosis is recommended in all patients with NDM. However, if genetic testing results are delayed, sulfonylurea therapy should be considered before such results are received, even in infants with newly diagnosed NDM
Effects of lipid regulation using raw and processed radix polygoni multiflori in rats fed a high-fat diet
Raw and processed Radix Polygoni Multiflori have been used in the prevention and treatment of nonalcoholic fatty liver disease (NAFLD), hyperlipidemia, and related diseases in Asian counties for centuries. The lipid regulation ability of raw and processed Poligoni Multiflori Radix were compared in high-fat diet fed rats in this research. Total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) in blood and liver tissue were all significantly higher in model rats. However, triglyceride (TG) contents increased only in liver tissue, not in the blood samples. The rats fed the high-fat diets were considered the model of type IIa hyperlipidemia and early-stage nonalcoholic fatty liver disease. Both Radix Polygoni Multiflori (RPM) and Radix Polygoni Multiflori Praeparata (RPMP) revealed TC-lowing effects, and middling doses of RPMP displayed the most significant TC-lowing effects, as indicated by blood samples. Neither RPM nor RPMP was found to reduce LDL-C in rats' blood. Nevertheless, RPM showed dose-dependent TC-and TG-lowing effects in the liver tissue samples. In conclusion, RPM showed more pronounced effects on lipid regulation in liver samples in the treatment of early-stage NAFLD. RPMP, however, displayed better effects in regulating lipids in circulating blood for the treatment of hyperlipidemia
Demethylating therapy increases cytotoxicity of CD44v6 CAR-T cells against acute myeloid leukemia
BackgroundCD44v6 chimeric antigen receptor T (CD44v6 CAR-T) cells demonstrate strong anti-tumor ability and safety in acute myeloid leukemia (AML). However, the expression of CD44v6 on T cells leads to transient fratricide and exhaustion of CD44v6 CAR-T cells, which affect the application of CD44v6 CAR-T. The exhaustion and function of T cells and CD44v6 expression of AML cells are associated with DNA methylation. Hypomethylating agents (HAMs) decitabine (Dec) and azacitidine (Aza) have been widely used to treat AML. Therefore, there may be synergy between CD44v6 CAR-T cells and HAMs in the treatment of AML.MethodsCD44v6 CAR-T cells pretreated with Dec or Aza were co-cultured with CD44v6+ AML cells. Dec or aza pretreated AML cells were co-cultured with CD44v6 CAR-T cells. The cytotoxicity, exhaustion, differentiation and transduction efficiency of CAR-T cells, and CD44v6 expression and apoptosis in AML cells were detected by flow cytometry. The subcutaneous tumor models were used to evaluate the anti-tumor effect of CD44v6 CAR-T cells combined with Dec in vivo. The effects of Dec or Aza on gene expression profile of CD44v6 CAR-T cells were analyzed by RNA-seq.ResultsOur results revealed that Dec and Aza improved the function of CD44v6 CAR-T cells through increasing the absolute output of CAR+ cells and persistence, promoting activation and memory phenotype of CD44v6 CAR-T cells, and Dec had a more pronounced effect. Dec and Aza promoted the apoptosis of AML cells, particularly with DNA methyltransferase 3A (DNMT3A) mutation. Dec and Aza also enhanced the CD44v6 CAR-T response to AML by upregulating CD44v6 expression of AML cells regardless of FMS-like tyrosine kinase 3 (FLT3) or DNMT3A mutations. The combination of Dec or Aza pretreated CD44v6 CAR-T with pretreated AML cells demonstrated the most potent anti-tumor ability against AML.ConclusionDec or Aza in combination with CD44v6 CAR-T cells is a promising combination therapy for AML patients
Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton
The PHENIX experiment presents results from the RHIC 2005 run with polarized
proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at
mid-rapidity. Unpolarized cross section results are given for transverse
momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both
lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by
an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double
helicity asymmetries A_LL are presented based on a factor of five improvement
in uncertainties as compared to previously published results, due to both an
improved beam polarization of 50%, and to higher integrated luminosity. These
measurements are sensitive to the gluon polarization in the proton, and exclude
maximal values for the gluon polarization.Comment: 375 authors, 7 pages, 3 figures. Submitted to Phys. Rev. D, Rapid
Communications. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …