5,590 research outputs found

    The Fastest Mixing Markov Process on a Graph and a Connection to a Maximum Variance Unfolding Problem

    Get PDF
    We consider a Markov process on a connected graph, with edges labeled with transition rates between the adjacent vertices. The distribution of the Markov process converges to the uniform distribution at a rate determined by the second smallest eigenvalue lambda_2 of the Laplacian of the weighted graph. In this paper we consider the problem of assigning transition rates to the edges so as to maximize lambda_2 subject to a linear constraint on the rates. This is the problem of finding the fastest mixing Markov process (FMMP) on the graph. We show that the FMMP problem is a convex optimization problem, which can in turn be expressed as a semidefinite program, and therefore effectively solved numerically. We formulate a dual of the FMMP problem and show that it has a natural geometric interpretation as a maximum variance unfolding (MVU) problem, , the problem of choosing a set of points to be as far apart as possible, measured by their variance, while respecting local distance constraints. This MVU problem is closely related to a problem recently proposed by Weinberger and Saul as a method for "unfolding" high-dimensional data that lies on a low-dimensional manifold. The duality between the FMMP and MVU problems sheds light on both problems, and allows us to characterize and, in some cases, find optimal solutions

    Study of the weak annihilation contributions in charmless BsVVB_s\to VV decays

    Full text link
    In this paper, in order to probe the spectator-scattering and weak annihilation contributions in charmless BsVVB_s\to VV (where VV stands for a light vector meson) decays, we perform the χ2\chi^2-analyses for the end-point parameters within the QCD factorization framework, under the constraints from the measured Bˉs\bar B_{s}\toρ0ϕ\rho^0\phi, ϕK0\phi K^{*0}, ϕϕ\phi \phi and K0Kˉ0K^{*0}\bar K^{*0} decays. The fitted results indicate that the end-point parameters in the factorizable and nonfactorizable annihilation topologies are non-universal, which is also favored by the charmless BPPB\to PP and PVPV (where PP stands for a light pseudo-scalar meson) decays observed in the previous work. Moreover, the abnormal polarization fractions fL,(BˉsK0Kˉ0)=(20.1±7.0)%,(58.4±8.5)%f_{L,\bot}(\bar B_{s}\to K^{*0}\bar K^{*0})=(20.1\pm7.0)\%\,,(58.4\pm8.5)\% measured by the LHCb collaboration can be reconciled through the weak annihilation corrections. However, the branching ratio of BˉsϕK0\bar B_{s}\to\phi K^{*0} decay exhibits a tension between the data and theoretical result, which dominates the contributions to χmin2\chi_{\rm min}^2 in the fits. Using the fitted end-point parameters, we update the theoretical results for the charmless BsVVB_s\to VV decays, which will be further tested by the LHCb and Belle-II experiments in the near future.Comment: 31 pages, 4 figures, 6 table

    A Duality View of Spectral Methods for Dimensionality Reduction

    Get PDF
    We present a unified duality view of several recently emerged spectral methods for nonlinear dimensionality reduction, including Isomap, locally linear embedding, Laplacian eigenmaps, and maximum variance unfolding. We discuss the duality theory for the maximum variance unfolding problem, and show that other methods are directly related to either its primal formulation or its dual formulation, or can be interpreted from the optimality conditions. This duality framework reveals close connections between these seemingly quite different algorithms. In particular, it resolves the myth about these methods in using either the top eigenvectors of a dense matrix, or the bottom eigenvectors of a sparse matrix — these two eigenspaces are exactly aligned at primaldual optimality

    Valley Carrier Dynamics in Monolayer Molybdenum Disulphide from Helicity Resolved Ultrafast Pump-probe Spectroscopy

    Full text link
    We investigate the valley related carrier dynamics in monolayer MoS2 using helicity resolved non-degenerate ultrafast pump-probe spectroscopy at the vicinity of the high-symmetry K point under the temperature down to 78 K. Monolayer MoS2 shows remarkable transient reflection signals, in stark contrast to bilayer and bulk MoS2 due to the enhancement of many-body effect at reduced dimensionality. The helicity resolved ultrafast time-resolved result shows that the valley polarization is preserved for only several ps before scattering process makes it undistinguishable. We suggest that the dynamical degradation of valley polarization is attributable primarily to the exciton trapping by defect states in the exfoliated MoS2 samples. Our experiment and a tight-binding model analysis also show that the perfect valley CD selectivity is fairly robust against disorder at the K point, but quickly decays from the high-symmetry point in the momentum space in the presence of disorder.Comment: 15 pages,Accepted by ACS Nan
    corecore