1,960 research outputs found

    A Survey of Insulin-Dependent Diabetes—Part II: Control Methods

    Get PDF
    We survey blood glucose control schemes for insulin-dependent diabetes therapies and systems. These schemes largely rely on mathematical models of the insulin-glucose relations, and these models are typically derived in an empirical or fundamental way. In an empirical way, the experimental insulin inputs and resulting blood-glucose outputs are used to generate a mathematical model, which includes a couple of equations approximating a very complex system. On the other hand, the insulin-glucose relation is also explained from the well-known facts of other biological mechanisms. Since these mechanisms are more or less related with each other, a mathematical model of the insulin-glucose system can be derived from these surrounding relations. This kind of method of the mathematical model derivation is called a fundamental method. Along with several mathematical models, researchers develop autonomous systems whether they involve medical devices or not to compensate metabolic disorders and these autonomous systems employ their own control methods. Basically, in insulin-dependent diabetes therapies, control methods are classified into three categories: open-loop, closed-loop, and partially closed-loop controls. The main difference among these methods is how much the systems are open to the outside people

    A Survey of Insulin-Dependent Diabetes—Part I: Therapies and Devices

    Get PDF
    This paper surveys diabetes therapies from telemedicine viewpoint. In type 1 diabetes therapies, the exogenous insulin replacement is generally considered as a primary treatment. However, the complete replacement of exogenous insulin is still a challenging issue because of its complexity of modeling the dynamics, which is typically modeled nonlinearly. On the other hand, thanks to the progress of medical devices, currently the diabetes therapies are being automated. These medical devices include automated insulin pumps and blood glucose sensors. Insulin pumps are designed to create artificial insulin perfusion while they largely rely on the blood glucose profile measurements and these measurements are achieved by one or more blood glucose sensors. The blood glucose measurements are also important for the insulin-dependent diabetes therapies. An insulin pump along with sensors establishes a good feedback system providing the appropriate amount of the exogenous insulin on demand. Controlling the amount of exogenous insulin to suppress the blood glucose levels requires complicated computations. This paper mostly explains both type 1 and 2 diabetes and their mechanisms accompanied by descriptions of diabetes therapy and medical devices currently utilized in the therapy

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    N-(3-Chloro-4-eth­oxy­benzo­yl)-N′-(2-meth­oxy­phen­yl)thio­urea

    Get PDF
    In the title compound, C17H17ClN2O3S, the central carbonyl­thio­urea unit is nearly planar [maximum atomic deviation = 0.019 (3) Å] and makes dihedral angles of 2.47 (7) and 17.76 (6)° with the terminal benzene rings. An intra­molecular N—H⋯O hydrogen bond occurs. Weak inter­molecular C—H⋯S and C—H⋯Cl hydrogen bonding is observed in the crystal structure

    An Efficient Process for Pretreatment of Lignocelluloses in Functional Ionic Liquids

    Get PDF
    Background and Aims. The complex structure of the lignocelluloses is the main obstacle in the conversion of lignocellulosic biomass into valuable products. Ionic liquids provide the opportunities for their efficient pretreatment for biomass. Therefore, in this work, pretreatment of corn stalk was carried out in ultrasonic-assisted ionic liquid including 1-butyl-3-methylimidazolium chloride [BMIM]Cl, 1-H-3-methylimidazolium chloride [HMIM]Cl, and 1-(1-propylsulfonic)-3-imidazolium chloride [HSO3-pMIM]Cl at 70°C for 2 h. We compared the pretreatments by ionic liquid with and without the addition of deionized water. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were employed to analyze the chemical characteristics of regenerated cellulose-rich materials. Results. [HMIM]Cl and [HSO3-pMIM]Cl were effective in lignin extraction to obtain cellulose-rich materials. FTIR analysis and SEM analysis indicated the effective lignin removal and the reduced crystallinity of cellulose-rich materials. Enzymatic hydrolysis of cellulose-rich materials was performed efficiently. High yields of reducing sugar and glucose were obtained when the corn stalk was pretreated by [HMIM]Cl and [HSO3-pMIM]Cl. Conclusions. Ionic liquids provided the ideal environment for lignin extraction and enzymatic hydrolysis of corn stalk and [HMIM]Cl and [HSO3-pMIM]Cl proved the most efficient ionic liquids. This simple and environmentally acceptable method has a great potential for the preparation of bioethanol for industrial production

    Application of Virtual Simulation Technology in Theory and Experiment Teaching of Air Pollution Control Engineering

    Get PDF
    Virtual reality technology provides great convenience for humans to explore the macro and micro worlds due to its extremely realistic experience, and it will be seen in all walks of life in the future. This paper focuses on the analysis of the current situation of virtual simulation technology in the teaching application of air pollution control engineering theory teaching and experimental teaching, as well as the advantages and disadvantages of application. Furthermore, the development and prospect of virtual simulation technology in air pollution control engineering theory and experimental teaching are summarized. Keywords: virtual simulation technology, air pollution control engineering, theoretical teaching, experimental teaching DOI: 10.7176/JEP/13-29-08 Publication date:October 31st 202
    corecore