4 research outputs found

    High-Performance Fine Defect Detection in Artificial Leather Using Dual Feature Pool Object Detection

    Full text link
    In this study, the structural problems of the YOLOv5 model were analyzed emphatically. Based on the characteristics of fine defects in artificial leather, four innovative structures, namely DFP, IFF, AMP, and EOS, were designed. These advancements led to the proposal of a high-performance artificial leather fine defect detection model named YOLOD. YOLOD demonstrated outstanding performance on the artificial leather defect dataset, achieving an impressive increase of 11.7% - 13.5% in AP_50 compared to YOLOv5, along with a significant reduction of 5.2% - 7.2% in the error detection rate. Moreover, YOLOD also exhibited remarkable performance on the general MS-COCO dataset, with an increase of 0.4% - 2.6% in AP compared to YOLOv5, and a rise of 2.5% - 4.1% in AP_S compared to YOLOv5. These results demonstrate the superiority of YOLOD in both artificial leather defect detection and general object detection tasks, making it a highly efficient and effective model for real-world applications

    YOLOCS: Object Detection based on Dense Channel Compression for Feature Spatial Solidification

    Full text link
    In this study, we examine the associations between channel features and convolutional kernels during the processes of feature purification and gradient backpropagation, with a focus on the forward and backward propagation within the network. Consequently, we propose a method called Dense Channel Compression for Feature Spatial Solidification. Drawing upon the central concept of this method, we introduce two innovative modules for backbone and head networks: the Dense Channel Compression for Feature Spatial Solidification Structure (DCFS) and the Asymmetric Multi-Level Compression Decoupled Head (ADH). When integrated into the YOLOv5 model, these two modules demonstrate exceptional performance, resulting in a modified model referred to as YOLOCS. Evaluated on the MSCOCO dataset, the large, medium, and small YOLOCS models yield AP of 50.1%, 47.6%, and 42.5%, respectively. Maintaining inference speeds remarkably similar to those of the YOLOv5 model, the large, medium, and small YOLOCS models surpass the YOLOv5 model's AP by 1.1%, 2.3%, and 5.2%, respectively

    Discharge current modes of high power impulse magnetron sputtering

    No full text
    Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated
    corecore