82 research outputs found
Cloning and Characterization of a Pyrethroid Pesticide Decomposing Esterase Gene, \u3cem\u3eEst3385\u3c/em\u3e, from \u3cem\u3eRhodopseudomonas palustris\u3c/em\u3e PSB-S
Full length open reading frame of pyrethroid detoxification gene, Est3385, contains 963 nucleotides. This gene was identified and cloned based on the genome sequence of Rhodopseudomonas palustris PSB-S available at the GneBank. The predicted amino acid sequence of Est3385 shared moderate identities (30–46%) with the known homologous esterases. Phylogenetic analysis revealed that Est3385 was a member in the esterase family I. Recombinant Est3385 was heterologous expressed in E. coli, purified and characterized for its substrate specificity, kinetics and stability under various conditions. The optimal temperature and pH for Est3385 were 35 °C and 6.0, respectively. This enzyme could detoxify various pyrethroid pesticides and degrade the optimal substrate fenpropathrin with a Km and Vmax value of 0.734 ± 0.013 mmol·l−1 and 0.918 ± 0.025 U·µg−1, respectively. No cofactor was found to affect Est3385 activity but substantial reduction of enzymatic activity was observed when metal ions were applied. Taken together, a new pyrethroid degradation esterase was identified and characterized. Modification of Est3385 with protein engineering toolsets should enhance its potential for field application to reduce the pesticide residue from agroecosystems
Salvianolic Acid A Protects Against Oxidative Stress and Apoptosis Induced by Intestinal Ischemia-Reperfusion Injury Through Activation of Nrf2/HO-1 Pathways
Background/Aims: Ischemia-reperfusion (I/R) adversely affects the intestinal mucosa. The major mechanisms of I/R are the generation of reactive oxygen species (ROS) and apoptosis. Salvianolic acid A (SalA) is suggested to be an effective antioxidative and antiapoptotic agent in numerous pathological injuries. The present study investigated the protective role of SalA in I/R of the intestine. Methods: Adult male Sprague-Dawley rats were subjected to intestinal I/R injury in vivo. In vitro experiments were performed in IEC-6 cells subjected to hypoxia/ reoxygenation (H/R) stimulation to simulate intestinal I/R. TNF-α, IL-1β, and IL-6 levels were measured using enzyme-linked immunosorbent assay. Malondialdehyde and myeloperoxidase and glutathione peroxidase levels were measured using biochemical analysis. Apoptosis was measured by terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling staining or flow cytometry in vivo and in vitro. The level of reactive oxygen species (ROS) was measured by dichlorodihydrofluorescin diacetate (DCFH-DA) staining. Western blotting was performed to determine the expression of heme oxygenase-1 (HO-1), Nrf2 and proteins associated with apoptosis. The mRNA expressions of Nrf2 and HO-1 were detected by quantitative real-time polymerase chain reaction in vivo and in vitro. Results: Malondialdehyde level and myeloperoxidase and glutathione peroxidase, TNF-α, IL-1β, and IL-6 levels group in intestinal tissue decreased significantly in the SalA pretreatment groups compared to the I/R group. SalA markedly abolished intestinal injury compared to the I/R group. SalA significantly attenuated apoptosis and increased Nrf2/HO-1 expression in vivo and in vitro. However, Nrf2 siRNA treatment partially abrogated the above mentioned effects of SalA in H/R-induced ROS and apoptosis in IEC-6 cells. Conclusion: The present study demonstrated that SalA ameliorated oxidation, inhibited the release of pro-inflammatory cytokines and alleviated apoptosis in I/R-induced injury and that these protective effects may partially occur via regulation of the Nrf2/ HO-1 pathways
3D Face Arbitrary Style Transfer
Style transfer of 3D faces has gained more and more attention. However,
previous methods mainly use images of artistic faces for style transfer while
ignoring arbitrary style images such as abstract paintings. To solve this
problem, we propose a novel method, namely Face-guided Dual Style Transfer
(FDST). To begin with, FDST employs a 3D decoupling module to separate facial
geometry and texture. Then we propose a style fusion strategy for facial
geometry. Subsequently, we design an optimization-based DDSG mechanism for
textures that can guide the style transfer by two style images. Besides the
normal style image input, DDSG can utilize the original face input as another
style input as the face prior. By this means, high-quality face arbitrary style
transfer results can be obtained. Furthermore, FDST can be applied in many
downstream tasks, including region-controllable style transfer, high-fidelity
face texture reconstruction, large-pose face reconstruction, and artistic face
reconstruction. Comprehensive quantitative and qualitative results show that
our method can achieve comparable performance. All source codes and pre-trained
weights will be released to the public
Exploiting Emotion-Semantic Correlations for Empathetic Response Generation
Empathetic response generation aims to generate empathetic responses by
understanding the speaker's emotional feelings from the language of dialogue.
Recent methods capture emotional words in the language of communicators and
construct them as static vectors to perceive nuanced emotions. However,
linguistic research has shown that emotional words in language are dynamic and
have correlations with other grammar semantic roles, i.e., words with semantic
meanings, in grammar. Previous methods overlook these two characteristics,
which easily lead to misunderstandings of emotions and neglect of key
semantics. To address this issue, we propose a dynamical Emotion-Semantic
Correlation Model (ESCM) for empathetic dialogue generation tasks. ESCM
constructs dynamic emotion-semantic vectors through the interaction of context
and emotions. We introduce dependency trees to reflect the correlations between
emotions and semantics. Based on dynamic emotion-semantic vectors and
dependency trees, we propose a dynamic correlation graph convolutional network
to guide the model in learning context meanings in dialogue and generating
empathetic responses. Experimental results on the EMPATHETIC-DIALOGUES dataset
show that ESCM understands semantics and emotions more accurately and expresses
fluent and informative empathetic responses. Our analysis results also indicate
that the correlations between emotions and semantics are frequently used in
dialogues, which is of great significance for empathetic perception and
expression.Comment: 12 pages, 3 figures, Findings of EMNLP 202
Study on the Comprehensive Properties and Microstructures of A3-3 Matrix Graphite Related to the High Temperature Purification Treatment
At the beginning, a comparative analysis was made on the oxidation corrosion rate and ash content of A3-3 matrix graphite (MG) pebbles lathed before and after high temperature purification (HTP) treatment. Their oxidation corrosion rate and ash contents were almost identical, which indicated that the HTP process was to purify the entire MG pebbles and not limited on the surfaces. Furthermore, the multiple mechanical and thermal properties of MG treated without and with the treatment of HTP at ~1900°C were compared and their microstructure features were characterized as well. As the crush strength, oxidation corrosion rate, and erosion rate of MG without HTP treatment did not satisfy the specifications, the comprehensive properties and purity of MG with HTP were improved in various degrees through the HTP process so that all performances met the requirements of the A3-3 MG. The improvement of crush strength and erosion rate of MG in the HTP process could be mainly attributed to the upgradation of ordered microstructure and corresponding increase of density. However, the enhancement of oxidation corrosion rate was due to the synergistic effects of microstructural optimization and reduction of impurity elements, especially the transition metal elements of MG in the HTP process
DreamLLM: Synergistic Multimodal Comprehension and Creation
This paper presents DreamLLM, a learning framework that first achieves
versatile Multimodal Large Language Models (MLLMs) empowered with frequently
overlooked synergy between multimodal comprehension and creation. DreamLLM
operates on two fundamental principles. The first focuses on the generative
modeling of both language and image posteriors by direct sampling in the raw
multimodal space. This approach circumvents the limitations and information
loss inherent to external feature extractors like CLIP, and a more thorough
multimodal understanding is obtained. Second, DreamLLM fosters the generation
of raw, interleaved documents, modeling both text and image contents, along
with unstructured layouts. This allows DreamLLM to learn all conditional,
marginal, and joint multimodal distributions effectively. As a result, DreamLLM
is the first MLLM capable of generating free-form interleaved content.
Comprehensive experiments highlight DreamLLM's superior performance as a
zero-shot multimodal generalist, reaping from the enhanced learning synergy.Comment: see project page at https://dreamllm.github.io
Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease
BACKGROUND:
Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes.
METHODS:
We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization.
RESULTS:
During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events.
CONCLUSIONS:
Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
Labeling outerplanar graphs with maximum degree three
An L(2, 1)-labeling of a graph G is an assignment of a nonnegative integer to each vertex of G such that adjacent vertices receive integers that differ by at least two and vertices at distance two receive distinct integers. The span of such a labeling is the difference between the largest and smallest integers used. The λ-number of G, denoted by λ(G), is the minimum span over all L(2, 1)-labelings of G. Bodlaender et al. conjectured that if G is an outerplanar graph of maximum degree ∆, then λ(G) ≤ ∆ + 2. Calamoneri and Petreschi proved that this conjecture is true when ∆ ≥ 8 but false when ∆ = 3. Meanwhile, they proved that λ(G) ≤ ∆ + 5 for any outerplanar graph G with ∆ = 3 and asked whether or not this bound is sharp. In this paper we answer this question by proving that λ(G) ≤ ∆ + 3 for every outerplanar graph with maximum degree ∆ = 3. We also show that this bound ∆ + 3 can be achieved by infinitely many outerplanar graphs with ∆ = 3
- …