42 research outputs found

    Dark Septate Endophytes Isolated From Wild Licorice Roots Grown in the Desert Regions of Northwest China Enhance the Growth of Host Plants Under Water Deficit Stress

    Get PDF
    This study aimed to explore dark septate endophytes (DSE) that may improve the cultivation of medicinal plants in arid ecosystems. We isolated and identified eight DSE species (Acremonium nepalense, Acrocalymma vagum, Alternaria chartarum, Alternaria chlamydospora, Alternaria longissima, Darksidea alpha, Paraphoma chrysanthemicola, and Preussia terricola) colonizing the roots of wild licorice (Glycyrrhiza uralensis) in the desert areas of northwest China. Moreover, we investigated the osmotic stress tolerance of the DSE using pure culture, along with the performance of licorice plants inoculated with the DSE under drought stress in a growth chamber, respectively. Here, five species were first reported in desert habitats. The osmotic-stress tolerance of DSE species was highly variable, A. chlamydospora and P. terricola increased the total biomass and root biomass of the host plant. All DSE except A. vagum and P. chrysanthemicola increased the glycyrrhizic acid content; all DSE except A. chartarum increased the glycyrrhizin content under drought stress. DSE × watering regimen improved the glycyrrhizic acid content, soil organic matter, and available nitrogen. Structural equation model analysis showed that DSE × watering regimen positively affected soil organic matter, and total biomass, root length, glycyrrhizic acid, and glycyrrhizin (Shapotou site); and positively affected soil organic matter, available phosphorus, and glycyrrhizin (Minqin site); and positively affected the root length (Anxi site). DSE from the Shapotou site accounted for 8.0, 13.0, and 11.3% of the variations in total biomass, root biomass, and active ingredient content; DSE from the Minqin site accounted for 6.6 and 8.3% of the variations in total biomass and root biomass; DSE from the Anxi site accounted for 4.2 and 10.7% of the variations in total biomass and root biomass. DSE × watering regimen displayed a general synergistic effect on plant growth and active ingredient contents. These findings suggested that the DSE–plant interactions were affected by both DSE species and DSE originating habitats. As A. chlamydospora and P. terricola positively affected the total biomass, root biomass, and active ingredient content of host plants under drought stress, they may have important uses as promoters for the cultivation of licorice in dryland agriculture

    Genotype and environment factors driven licorice growth and rhizospheric soil fungal community changes

    Get PDF
    IntroductionLicorice (Glycyrrhiza uralensis Fisch.) is a widely recognized significant form of medicine in China, with a long-standing history and extensive usage. It is considered the oldest and most prevalent herbal medicine in China. Currently, the licorice market is confronted with the primary challenges of mixed genotypes, inconsistent quality, and inadequate glycyrrhizic acid content.MethodsWe conducted field experiments to investigate the impact of various cultivation locations on the growth characteristics, active ingredients, rhizospheric soil physicochemical properties and fungal communities of licorice that ten different genotypes.ResultsThe findings indicated significant variations in these parameters across ten different genotypes of licorice originating from two distinct production regions. The growth characteristics of licorice were primarily influenced by genotype, whereas the active ingredients of licorice were mainly influenced by environmental factors and soil physicochemical properties. Furthermore, the rhizospheric soil physicochemical properties of licorice plants were more influenced by environmental factors than genotypes. Additionally, the distribution of rhizospheric soil fungi in licorice plants of the same genotype exhibited significant variations across different cultivation areas. The utilization of structural equation model synthesis reveals variations in the quantity and strength of pathways that influence the growth characteristics, active ingredients, and rhizospheric soil microbial community of licorice across different cultivation regions.DiscussionBased on the main results, according to its growth characteristics and active ingredients, Z009 proved to be the most suitable genotype for cultivation in Jingtai. From a perspective centered on the active ingredient, Z010 proved to be the most optimal genotype for licorice cultivation in both production areas. Our study aims to enhance the understanding of the ecological adaptability of various genotypes of licorice resources and to identify appropriate licorice genotypes for specific cultivation regions. This research holds significant practical implications for enhancing the yield and quality of licorice, thereby improving its overall development

    Deciphering the effects of genotype and climatic factors on the performance, active ingredients and rhizosphere soil properties of Salvia miltiorrhiza

    Get PDF
    IntroductionSalvia miltiorrhiza Bunge is an important medicinal herb, which is widely cultivated in most parts of China. It has attracted considerable attention because of its pharmacological properties and potential health benefits.MethodsWe used a field experiment to determine the effects of different genotypes and climatic factors on the performance (plant biomass, morphological parameters), active ingredients, rhizosphere soil physicochemical properties and microbial composition of S. miltiorrhiza at five cultivation locations.ResultsThe results showed that these parameters were significantly different in the six different genotypes of S. miltiorrhiza from five producing areas. Genotype and soil physicochemical properties were the main factors affecting the growth traits of S. miltiorrhiza, while genotype, climate and soil physicochemical properties were the main factors affecting the content of active components of S. miltiorrhiza. Microbial phospholipid fatty acid analysis showed that the biomass of Gram-positive and Gram-negative bacteria was affected by the genotypes of S. miltiorrhiza plants, while the biomass of arbuscular mycorrhizal fungi, fungi, Gram-positive and Gram-negative bacteria was affected by climate factors.DiscussionBased on the main results, DS993 was the most suitable genotype for S. miltiorrhiza in the five producing areas from the perspective of comprehensive growth traits and medicinal components, while DS993 and DS2000 were suitable for planting in Shandong province from the perspective of origin. DS996 is not suitable for all of the above production areas. These results are helpful to understand the ecological adaptability of different genotypes of S. miltiorrhiza resources, and to select appropriate S. miltiorrhiza genotypes for specific planting areas, so as to maximize yield and quality

    Mini percutaneous nephrolithotomy is a noninferior modality to standard percutaneous nephrolithotomy for the management of 20-40 mm renal calculi: A Multicenter randomized controlled trial

    Get PDF
    Background: High quality of evidence comparing mini percutaneous nephrolithotomy (mPNL) with standard percutaneous nephrolithotomy (sPNL) for the treatment of larger-sized renal stones is lacking. Objective: To compare the efficacy and safety of mPNL and sPNL for the treatment of 20–40 mm renal stones. Design, setting, and participants: A parallel, open-label, and noninferior randomized controlled trial was performed at 20 Chinese centers (2016–2019). The inclusion criteria were patients 18–70 yr old, with normal renal function, and 20–40 mm renal stones. Intervention: Percutaneous nephrolithotomy PNL was performed using either 18 F or 24 F percutaneous nephrostomy tracts. Outcome measurements and statistical analysis: The primary outcome was the one-session stone-free rate (SFR). The secondary outcomes included operating time, visual analog pain scale (VAS) score, blood loss, complications as per the Clavien-Dindo grading system, and length of hospitalization. Results and limitations: The 1980 intention-to-treat patients were randomized. The mPNL group achieved a noninferior one-session SFR to the sPNL group by the one-side noninferiority test (0.5% [difference], p < 0.001). The transfusion and embolization rates were comparable; however, the sPNL group had a higher hemoglobin drop (5.2 g/l, p < 0.001). The sPNL yielded shorter operating time (–2.2 min, p = 0.008) but a higher VAS score (0.8, p < 0.001). Patients in the sPNL group also had longer hospitalization (0.6 d, p < 0.001). There was no statistically significant difference in fever or urosepsis occurrences. The study's main limitation was that only 18F or 24F tract sizes were used. Conclusions: Mini mPNL achieves noninferior SFR outcomes to sPNL, but with reduced bleeding, less postoperative pain, and shorter hospitalization. Patient summary: We evaluated the surgical outcomes of percutaneous nephrolithotomy using two different sizes of nephrostomy tracts in a large population. We found that the smaller tract might be a sensible alternative for patients with 20–40 mm renal stones. This multicenter, parallel, open-label, and noninferior randomized controlled trial showed that mini percutaneous nephrolithotomy achieved noninferior stone-free rate with advantages of reduced blood loss, less postoperative pain, and shorter hospitalization. Mini percutaneous nephrolithotomy should be considered a sensible alternative treatment of 20–40 mm renal stones.grants from high-level development funding of Guangzhou Medical Universit

    Plant Performance and Soil Fungal Community Impacts of Enhancing <i>Dioscorea opposit</i><i>a</i> with Spraying Foliar Fertilizer with Different Nutrient Element Combinations

    No full text
    Foliar fertilization, an effective method to regulate plant nutrition has attracted much attention. In this study, the effects of different foliar fertilizers (F1: NPK formulation, F2: NPK+Fe-Mn-Zn formulation, F3: Fe-Mn-Zn formulation, and CK: deionized water) on plant growth, chemical composition, rhizosphere soil properties, and fungal community of Dioscorea opposita Thunb. were assessed by a field plot experiment. Rhizosphere fungal community was examined via Illumina MiSeq sequencing of ITS2 rRNA genes. Spraying foliar fertilizer directly affected the growth and chemical content of the plant, which depends on different foliar fertilizers. Ascomycota and Moraxella were the dominant fungal phyla. Nutrient elements were the main factors affecting fungal composition, and soil microelements positively influenced soil fungi, while soil macroelements negatively influenced soil fungi. Macroelement foliar fertilizer affected soil fungi by directly affecting the growth parameters and macroelement content of the plant or by directly affecting soil properties, while microelement foliar fertilizer affected soil fungi by directly affecting the microelement content of the plant or by directly affecting the soil pH and organic matter content. These factors were involved in the formation of a “leaf-root-soil microbe” conduction system similar to the “brain-gut-microbe” axis. Our results provide a basis for the application of foliar fertilizer in the cultivation of medicinal plants

    Energy Saving Technologies for Anode Manufacturing

    No full text

    Evaluation of the Effects of Paclobutrazol and Cultivation Years on Saponins in Ophiopogon japonicus Using UPLC-ELSD

    No full text
    Nowadays, there is a growing concern about the quality of herbs used in traditional Chinese medicine. In this study, we evaluated the impacts of paclobutrazol and cultivation period on steroid saponins in Ophiopogon japonicus. A rapid method to simultaneously determine three principle steroid saponins (ophiopogonins B, D, and D′) using ultraperformance liquid chromatography combined with an evaporative light-scattering detector was developed. The contents of three saponins in paclobutrazol-treated and nontreated Sichuan O. japonicus and those in the 2-year and 3-year Zhejiang O. japonicus were analyzed. The results showed that the saponin contents were sharply reduced in paclobutrazol-treated O. japonicus as compared to the control, whereas the concentrations of the three targeted saponins in Zhejiang O. japonicus varied with the increase in cultivation years, reflecting varied effects on saponins. Our study provided chemical evidences for further quality control and agricultural practices of O. japonicus

    Application of a Double-Sided Chance-Constrained Integer Linear Program for Optimization of the Incremental Value of Ecosystem Services in Jilin Province, China

    No full text
    The Interconnected River System Network Project (IRSNP) is a significant water supply engineering project, which is capable of effectively utilizing flood resources to generate ecological value, by connecting 198 lakes and ponds in western Jilin, northeast China. In this article, an optimization research approach has been proposed to maximize the incremental value of IRSNP ecosystem services. A double-sided chance-constrained integer linear program (DCCILP) method has been proposed to support the optimization, which can deal with uncertainties presented as integers or random parameters that appear on both sides of the decision variable at the same time. The optimal scheme indicates that after rational optimization, the total incremental value of ecosystem services from the interconnected river system network project increased 22.25%, providing an increase in benefits of 3.26 Ă— 109 ÂĄ compared to the original scheme. Most of the functional area is swamp wetland, which provides the greatest ecological benefits. Adjustment services increased obviously, implying that the optimization scheme prioritizes ecological benefits rather than supply and production services

    An Optimization Model for a Wetland Restoration Project under Uncertainty

    No full text
    Restoring natural wetlands with conservation projects is an urgent task for human well-being. This paper introduces the Interval linear programming (ILP) method in wetland restoration projects for the first time and builds an optimization model. The purpose of the optimization model is to find an optimal restoration measures allocation pattern that can minimize the total investment in wetland restoration projects and obtain additional ecological environment and socio-economic benefits. The optimization model can also decrease the influence of interval uncertainty in the system by expressing the executed solution as interval numbers with an upper bound and a lower bound. The result of the optimization model for the wetland restoration project indicated a range of 6.84%&#8315;15.43% reduction on comparison with the original scheme which verified the effectiveness and validity of this optimization model. Our findings indicate that higher ecological and social benefits of wetland restoration projects can be achieved with lower restoration investment on the application of the reasonable and optimal restoration measures allocation pattern by the optimization model. The results of interval solutions can provide guidance for project managers to select a satisfactory decision-making plan by adjusting the decision variables in the interval solutions according to the practical situation. It can be seen that reeds were suggested to be planted over 46.75 km2, with the same lower bound and higher bound. Meanwhile, populus euphratica, and dryland willow were recommended to be planted in a mixed forest pattern within the interval of 30.54 km2 to 37.25 km2, and so forth. With the optimal solutions obtained from the model, the total project investment would be in the range of 2193.14 (104 CNY) to 2416.01 (104 CNY). Future improvements of our optimization model in wetland restoration projects should consider other kinds of uncertainties in the system such as stochastic uncertainties, fuzzy uncertainties, and integrated uncertainties
    corecore