71 research outputs found

    Smaller SDP for SOS Decomposition

    Full text link
    A popular numerical method to compute SOS (sum of squares of polynomials) decompositions for polynomials is to transform the problem into semi-definite programming (SDP) problems and then solve them by SDP solvers. In this paper, we focus on reducing the sizes of inputs to SDP solvers to improve the efficiency and reliability of those SDP based methods. Two types of polynomials, convex cover polynomials and split polynomials, are defined. A convex cover polynomial or a split polynomial can be decomposed into several smaller sub-polynomials such that the original polynomial is SOS if and only if the sub-polynomials are all SOS. Thus the original SOS problem can be decomposed equivalently into smaller sub-problems. It is proved that convex cover polynomials are split polynomials and it is quite possible that sparse polynomials with many variables are split polynomials, which can be efficiently detected in practice. Some necessary conditions for polynomials to be SOS are also given, which can help refute quickly those polynomials which have no SOS representations so that SDP solvers are not called in this case. All the new results lead to a new SDP based method to compute SOS decompositions, which improves this kind of methods by passing smaller inputs to SDP solvers in some cases. Experiments show that the number of monomials obtained by our program is often smaller than that by other SDP based software, especially for polynomials with many variables and high degrees. Numerical results on various tests are reported to show the performance of our program.Comment: 18 page

    Termination of Linear Programs with Nonlinear Constraints

    Get PDF
    Tiwari proved that termination of linear programs (loops with linear loop conditions and updates) over the reals is decidable through Jordan forms and eigenvectors computation. Braverman proved that it is also decidable over the integers. In this paper, we consider the termination of loops with polynomial loop conditions and linear updates over the reals and integers. First, we prove that the termination of such loops over the integers is undecidable. Second, with an assumption, we provide an complete algorithm to decide the termination of a class of such programs over the reals. Our method is similar to that of Tiwari in spirit but uses different techniques. Finally, we conjecture that the termination of linear programs with polynomial loop conditions over the reals is undecidable in general by %constructing a loop and reducing the problem to another decision problem related to number theory and ergodic theory, which we guess undecidable.Comment: 17pages, 0 figure

    Generic Regular Decompositions for Parametric Polynomial Systems

    Full text link
    This paper presents a generalization of our earlier work in [19]. In this paper, the two concepts, generic regular decomposition (GRD) and regular-decomposition-unstable (RDU) variety introduced in [19] for generic zero-dimensional systems, are extended to the case where the parametric systems are not necessarily zero-dimensional. An algorithm is provided to compute GRDs and the associated RDU varieties of parametric systems simultaneously on the basis of the algorithm for generic zero-dimensional systems proposed in [19]. Then the solutions of any parametric system can be represented by the solutions of finitely many regular systems and the decomposition is stable at any parameter value in the complement of the associated RDU variety of the parameter space. The related definitions and the results presented in [19] are also generalized and a further discussion on RDU varieties is given from an experimental point of view. The new algorithm has been implemented on the basis of DISCOVERER with Maple 16 and experimented with a number of benchmarks from the literature.Comment: It is the latest version. arXiv admin note: text overlap with arXiv:1208.611

    Special Algorithm for Stability Analysis of Multistable Biological Regulatory Systems

    Full text link
    We consider the problem of counting (stable) equilibriums of an important family of algebraic differential equations modeling multistable biological regulatory systems. The problem can be solved, in principle, using real quantifier elimination algorithms, in particular real root classification algorithms. However, it is well known that they can handle only very small cases due to the enormous computing time requirements. In this paper, we present a special algorithm which is much more efficient than the general methods. Its efficiency comes from the exploitation of certain interesting structures of the family of differential equations.Comment: 24 pages, 5 algorithms, 10 figure
    • …
    corecore