47 research outputs found

    The hardness-duration correlation in the two classes of gamma-ray bursts

    Get PDF
    The well-known hardness-duration correlation of gamma-ray bursts (GRBs) is investigated with the data of the 4B catalog. We find that, while the hardness ratio and the duration are obviously correlated for the entire set of the 4B catalog, they are not at all correlated for the two subsets divided at the duration of 2 seconds. However, for other subsets with comparable sizes, the two quantities are significantly correlated. The following conclusions are then reached: (1) the existence of two classes of GRBs is confirmed; (2) the hardness ratio and the duration are not at all correlated for any of the two classes; (3) different classes of GRBs have different distributions of the hardness ratio and the duration and it is this difference that causes the correlation between the two quantities for the entire set of the bursts.Comment: 5 pages, 1 figure, accepted for publication in PAS

    β-defensin 2 as an Adjuvant Promotes Anti-Melanoma Immune Responses and Inhibits the Growth of Implanted Murine Melanoma In Vivo

    Get PDF
    β-defensin 2 is a small antimicrobial peptide of the innate immune system and has been thought to regulate anti-tumor immunity. However, little is known on whether β-defensin 2 could modulate melanoma-specific NK and T cell responses. In this study, we first cloned the murine β-defensin 2 gene by RT-PCR and generated the β-defensin 2 stably expressing B16 cells (B16-mBD2). Subsequently, we evaluated whether vaccination with irradiated B16-mBD2 could modulate the growth of implanted B16 cells and determined the potential mechanisms underlying the action of B16-mBD2 vaccine in modulating the growth of B16 tumors in C57BL/6. We found that vaccination with irradiated B16-mBD2, but not with control B16-p or parental B16, inhibited the development and progression of B16 tumors, and prolonged the survival of tumor-bearing mice. However, vaccination with irradiated B16-mBD2 failed to inhibit the development of B16 tumors in the CD4+- or CD8+-depleted recipients. Furthermore, vaccination with irradiated B16-mBD2 stimulated strong NK activity and promoted potent B16-specific CTL responses, accompanied by augmenting IFN-γ and IL-12, but not IL-4, responses in the recipient mice. Moreover, vaccination with irradiated B16-mBD2 promoted the infiltration of CD8+ and CD4+ T, NK cells and macrophages in the tumor tissues. These data suggest β-defensin 2 may act as a positive regulator, promoting anti-tumor NK and T cell responses in vivo. Therefore, β-defensin 2 may be used for the development of immunotherapy for the intervention of melanoma

    The Function of Cortactin in the Clustering of Acetylcholine Receptors at the Vertebrate Neuromuscular Junction

    Get PDF
    Background: Postsynaptic enrichment of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (NMJ) depends on the activation of the muscle receptor tyrosine MuSK by neural agrin. Agrin-stimulation of MuSK is known to initiate an intracellular signaling cascade that leads to the clustering of AChRs in an actin polymerization-dependent manner, but the molecular steps which link MuSK activation to AChR aggregation remain incompletely defined. Methodology/Principal Findings: In this study we used biochemical, cell biological and molecular assays to investigate a possible role in AChR clustering of cortactin, a protein which is a tyrosine kinase substrate and a regulator of F-actin assembly and which has also been previously localized at AChR clustering sites. We report that cortactin was co-enriched at AChR clusters in situ with its target the Arp2/3 complex, which is a key stimulator of actin polymerization in cells. Cortactin was further preferentially tyrosine phosphorylated at AChR clustering sites and treatment of myotubes with agrin significantly enhanced the tyrosine phosphorylation of cortactin. Importantly, forced expression in myotubes of a tyrosine phosphorylation-defective cortactin mutant (but not wild-type cortactin) suppressed agrin-dependent AChR clustering, as did the reduction of endogenous cortactin levels using RNA interference, and introduction of the mutant cortactin into muscle cells potently inhibited synaptic AChR aggregation in response to innervation. Conclusion: Our results suggest a novel function of phosphorylation-dependent cortactin signaling downstream fro

    A bodhisattva-spirit-oriented counselling framework: inspired by Vimalakīrti wisdom

    Get PDF

    Effects of Nitrogen Addition and Fire on Plant Nitrogen Use in a Temperate Steppe

    No full text
    Plant nitrogen (N) use strategies have great implications for primary production and ecosystem nutrient cycling. Given the increasing atmospheric N deposition received by most of the terrestrial ecosystems, understanding the responses of plant N use would facilitate the projection of plant-mediated N cycling under global change scenarios. The effects of N deposition on plant N use would be affected by both natural and anthropogenic disturbances, such as prescribed fire in the grassland. We examined the effects of N addition (5.25 g N m(−2) yr(−1)) and prescribed fire (annual burning) on plant N concentrations and N use characters at both species and community levels in a temperate steppe of northern China. We found that N addition and fire independently affected soil N availability and plant N use traits. Nitrogen addition increased aboveground net primary productivity (ANPP), inorganic N, and N uptake, decreased N response efficiency (NRE), but did not affect biomass-weighed N concentrations at community level. Prescribed fire did not change the community level N concentrations, but largely decreased N uptake efficiency and NRE. At the species level, the effects of N addition and fire on plant N use were species-specific. The divergent responses of plant N use at community and species levels to N addition and fire highlight the importance of the hierarchical responses of plant N use at diverse biological organization levels to the alteration of soil N availability. This study will improve our understanding of the responses of plant-mediated N cycling to global change factors and ecosystem management strategies in the semiarid grasslands
    corecore