917 research outputs found

    The naturalness in the BLMSSM and B-LSSM

    Full text link
    In order to interpret the Higgs mass and its decays more naturally, we hope to intrude the BLMSSM and B-LSSM. In the both models, the right-handed neutrino superfields are introduced to better explain the neutrino mass problems. In addition, there are other superfields considered to make these models more natural than MSSM. In this paper, the method of χ2\chi^2 analyses will be adopted in the BLMSSM and B-LSSM to calculate the Higgs mass, Higgs decays and muon g−2g-2. With the fine-tuning in the region 0.67%−2.5%0.67\%-2.5\% and 0.67%−5%0.67\%-5\%, we can obtain the reasonable theoretical values that are in accordance with the experimental results respectively in the BLMSSM and B-LSSM. Meanwhile, the best-fitted benchmark points in the BLMSSM and B-LSSM will be acquired at minimal (χminBL)2=2.34736(\chi^{BL}_{min})^2 = 2.34736 and (χminB−L)2=2.47754(\chi^{B-L}_{min})^2 = 2.47754, respectively

    The order analysis for the two loop corrections to lepton MDM

    Full text link
    The experimental data of the magnetic dipole moment(MDM) of lepton(ee, μ\mu) is very exact. The deviation between the experimental data and the standard model prediction maybe come from new physics contribution. In the supersymmetric models, there are very many two loop diagrams contributing to the lepton MDM. In supersymmetric models, we suppose two mass scales MSHM_{SH} and MM with MSH≫MM_{SH}\gg M for supersymmetric particles. Squarks belong to MSHM_{SH} and the other supersymmetric particles belong to MM. We analyze the order of the contributions from the two loop diagrams. The two loop triangle diagrams corresponding to the two loop self-energy diagram satisfy Ward-identity, and their contributions possess particular factors. This work can help to distinguish the important two loop diagrams giving corrections to lepton MDM.Comment: 12 pages, 3 figure

    Development of rheometer for semi-solid highmelting point alloys

    Get PDF
    A rheometer for semi-solid high-melting point alloys was developed based on the principle of a double-bucket rheometer, with which the solidifying of semi-solid high-melting point alloy melt could be effectively controlled by the control of temperature and the outer force-field; and different microstructures have also been obtained. This rheometer can be used to investigate the rheological behavior under different conditions by changing the Theological parameters. By way of full-duplex communication between the computer and each sensor, automatic control of the test equipment and real- timemeasurement of rheological parameters were realized. Finally, the influencing factors on torque are also quantitatively analyzed

    The extended BLMSSM with a 125 GeV Higgs boson and dark matter

    Full text link
    To extend the BLMSSM, we not only add exotic Higgs superfields (ΦNL,φNL)(\Phi_{NL},\varphi_{NL}) to make the exotic lepton heavy, but also introduce the superfields(YY,Y′Y^\prime) having couplings with lepton and exotic lepton at tree level. The obtained model is called as EBLMSSM, which has difference from BLMSSM especially for the exotic slepton(lepton) and exotic sneutrino(neutrino). We deduce the mass matrices and the needed couplings in this model. To confine the parameter space, the Higgs boson mass mh0m_{h^0} and the processes h0→γγh^0\rightarrow \gamma\gamma, h0→VV,V=(Z,W)h^0\rightarrow VV, V=(Z,W) are studied in the EBLMSSM. With the assumed parameter space, we obtain reasonable numerical results according to data on Higgs from ATLAS and CMS. As a cold dark mater candidate, the relic density for the lightest mass eigenstate of YY and Y′Y' mixing is also studied

    Charged lepton flavor violation in extended BLMSSM

    Full text link
    Within the extended BLMSSM, the exotic Higgs superfields (ΦNL,φNL)(\Phi_{NL},\varphi_{NL}) are added to make the exotic leptons heavy, and the superfields (YY,Y′Y^\prime) are also introduced to make exotic leptons unstable. This new model is named as the EBLMSSM. We study some charged lepton flavor violating (CLFV) processes in detail in the EBLMSSM, including lj→liγl_j\rightarrow l_i \gamma, muon conversion to electron in nuclei, the τ\tau decays and h0→liljh^0\rightarrow l_i l_j. Being different from BLMSSM, some particles are redefined in this new model, such as slepton, sneutrino, exotic lepton (neutrino), exotic slepton (sneutrino) and lepton neutralino. We also introduce the mass matrices of superfields YY and spinor Y~\tilde{Y} in the EBLMSSM. All of these lead to new contributions to the CLFV processes. In the suitable parameter space, we obtain the reasonable numerical results. The results of this work will encourage physicists to explore new physics beyond the SM

    Muon conversion to electron in nuclei within the BLMSSM

    Full text link
    In a supersymmetric extension of the standard model with local gauged baryon and lepton numbers (BLMSSM), there are new sources for lepton flavor violation, because the right-handed neutrinos, new gauginos and Higgs are introduced. We investigate muon conversion to electron in nuclei within the BLMSSM in detail. The numerical results indicate that the μ→e\mu \rightarrow e conversion rates in nuclei within the BLMSSM can reach the experimental upper bound, which may be detected in the future experiments.Comment: 20pages, 10figure
    • …
    corecore