714 research outputs found
Bonding-Compatible Corrosion Inhibitor for Rinsing Metals
A corrosion-inhibiting mixture of compounds has been developed for addition to the water used to rinse metal parts that have been cleaned with aqueous solutions in preparation for adhesive bonding of the metals to rubber and rubber-like materials. Prior to the development of this corrosion inhibitor, the parts (made, variously, of D6AC steel and 7075-T73 aluminum) were rinsed by deionized water, which caused corrosion in some places on the steel parts especially in such occluded places as sealing surfaces and threaded blind holes. An integral part of the particular cleaning process is the deposition of a thin layer of silicates and silane primers that increase the strength of the adhesive bond. The corrosion inhibitor is formulated, not only to inhibit corrosion of both D6AC steel and 7075- T73 aluminum, but also to either increase or at least not reduce the strength of the adhesive bond to be formed subsequently. The corrosion inhibitor is a mixture of sodium silicate and sodium tetraborate. The sodium silicate functions as both a corrosion inhibitor and a bond-strength promoter in association with the silane primers. The sodium tetraborate buffers the rinse solution at the optimum pH and functions as a secondary corrosion inhibitor for the steel. For a given application, the concentrations of sodium silicate and sodium tetraborate must be chosen in a compromise among the needs to inhibit corrosion of steel, inhibit corrosion of aluminum, and minimize cosmetic staining of both steel and aluminum. Concentrations of sodium silicate in excess of 150 parts of silicon per million parts of solution (ppm Si) have been determined to enhance inhibition of corrosion; unfortunately, because of the alkalinity of sodium silicate, even a small concentration can raise the pH of the rinse solution to such a level that aluminum becomes corroded despite the inhibiting effect. The pH of a solution that contains a high concentration of sodium silicate can be decreased by adding sodium tetraborate. On the other hand, the addition of sodium tetraborate increases the concentration of dissolved solids to such a high level that cosmetic staining becomes an issue
Hanbury Brown and Twiss interferometry at a free-electron laser
We present measurements of second- and higher-order intensity correlation
functions (so-called Hanbury Brown and Twiss experiment) performed at the
free-electron laser (FEL) FLASH in the non-linear regime of its operation. We
demonstrate the high transverse coherence properties of the FEL beam with a
degree of transverse coherence of about 80% and degeneracy parameter of the
order 10^9 that makes it similar to laser sources. Intensity correlation
measurements in spatial and frequency domain gave an estimate of the FEL
average pulse duration of 50 fs. Our measurements of the higher-order
correlation functions indicate that FEL radiation obeys Gaussian statistics,
which is characteristic to chaotic sources.Comment: 19 pages, 6 figures, 1 table, 40 reference
Statistical properties of a free-electron laser revealed by the Hanbury Brown and Twiss interferometry
We present a comprehensive experimental analysis of statistical properties of
the self-amplified spontaneous emission (SASE) free-electron laser (FEL) FLASH
at DESY in Hamburg by means of Hanbury Brown and Twiss (HBT) interferometry.
The experiments were performed at the FEL wavelengths of 5.5 nm, 13.4 nm, and
20.8 nm. We determined the 2-nd order intensity correlation function for all
wavelengths and different operation conditions of FLASH. In all experiments a
high degree of spatial coherence (above 50%) was obtained. Our analysis
performed in spatial and spectral domains provided us with the independent
measurements of an average pulse duration of the FEL that were below 60 fs. To
explain complicated behaviour of the 2-nd order intensity correlation function
we developed advanced theoretical model that includes the presence of multiple
beams and external positional jitter of the FEL pulses. By this analysis we
determined that in most experiments several beams were present in radiating
field and in one of the experiments external positional jitter was about 25% of
the beam size. We envision that methods developed in our study will be used
widely for analysis and diagnostics of the FEL radiation.Comment: 29 pages, 14 figures, 3 table
Ferromagnetism in a hard-core boson model
The problem of ferromagnetism -- associated with a ground state with maximal
total spin -- is discussed in the framework of a hard-core model, which forbids
the occupancy at each site with more than one particle. It is shown that the
emergence of ferromagnetism on finite square lattices crucially depends on the
statistics of the particles. Fermions (electrons) lead to the well-known
instabilities for finite hole densities, whereas for bosons (with spin)
ferromagnetism appears to be stable for all hole densities.Comment: 8 pages, 7 figures, RevTex
Seeded x-ray free-electron laser generating radiation with laser statistical properties
The invention of optical lasers led to a revolution in the field of optics
and even to the creation of completely new fields of research such as quantum
optics. The reason was their unique statistical and coherence properties. The
newly emerging, short-wavelength free-electron lasers (FELs) are sources of
very bright coherent extreme-ultraviolet (XUV) and x-ray radiation with pulse
durations on the order of femtoseconds, and are presently considered to be
laser sources at these energies. Most existing FELs are highly spatially
coherent but in spite of their name, they behave statistically as chaotic
sources. Here, we demonstrate experimentally, by combining Hanbury Brown and
Twiss (HBT) interferometry with spectral measurements that the seeded XUV FERMI
FEL-2 source does indeed behave statistically as a laser. The first steps have
been taken towards exploiting the first-order coherence of FELs, and the
present work opens the way to quantum optics experiments that strongly rely on
high-order statistical properties of the radiation.Comment: 24 pages, 10 figures, 37 reference
Exact single spin flip for the Hubbard model in
It is shown that the dynamics of a single -electron interacting
with a band of -electrons can be calculated exactly in the limit of
infinite dimension. The corresponding Green function is determined as a
continued fraction. It is used to investigate the stability of saturated
ferromagnetism and the nature of the ground state for two generic non-bipartite
infinite dimensional lattices. Non Fermi liquid behavior is found. For certain
dopings the -electron is bound to the -holes.Comment: 4 pages, 3 figures included with psfig, Revtex; Phys. Rev. Lett. in
press; some amendments made to clarify the calculation of the self-energy,
the extrapolation of the continued fraction, and the statements on
Fermi-liquid theor
The Effects of Silicone Contamination on Bond Performance of Various Bond Systems
The sensitivity to silicone contamination of a wide variety of adhesive bond systems is discussed. Generalizations regarding factors that make some bond systems more sensitive to contamination than others are inferred and discussed. The effect of silane adhesion promoting primer on the contamination sensitivity of two epoxy/steel bond systems is also discussed
Quantum Monte Carlo simulations of infinitely strongly correlated fermions
Numerical simulations of the two-dimensional t-J model in the limit are performed for rather large systems (up to ) using a
world-line loop-algorithm. It is shown that in the one-hole case with J=0,
where no minus signs appear, very low temperatures () are
necessary in order to reach Nagaoka's state. J/t \ltsim 0.05 leads to the
formation of partially polarized systems, whereas J/t \gtsim 0.05
corresponds to minimal spin. The two-hole case shows enhanced total spin up to
the lowest attainable temperatures ().Comment: 6 pages, 5 figure
Recommended from our members
Towards time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers
We have performed core level photoelectron spectroscopy on a W(110) single crystal with femtosecond XUV pulses from the free-electron laser at Hamburg (FLASH). We demonstrate experimentally and through theoretical modelling that for a suitable range of photon fluences per pulse, time-resolved photoemission experiments on solid surfaces are possible. Using FLASH pulses in combination with a synchronized optical laser, we have performed femtosecond time-resolved core-level photoelectron spectroscopy and observed sideband formation on the W 4f lines indicating a cross correlation between femtosecond optical and XUV pulses. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
- …