495 research outputs found

    Dissipation of information in channels with input constraints

    Full text link
    One of the basic tenets in information theory, the data processing inequality states that output divergence does not exceed the input divergence for any channel. For channels without input constraints, various estimates on the amount of such contraction are known, Dobrushin's coefficient for the total variation being perhaps the most well-known. This work investigates channels with average input cost constraint. It is found that while the contraction coefficient typically equals one (no contraction), the information nevertheless dissipates. A certain non-linear function, the \emph{Dobrushin curve} of the channel, is proposed to quantify the amount of dissipation. Tools for evaluating the Dobrushin curve of additive-noise channels are developed based on coupling arguments. Some basic applications in stochastic control, uniqueness of Gibbs measures and fundamental limits of noisy circuits are discussed. As an application, it shown that in the chain of nn power-constrained relays and Gaussian channels the end-to-end mutual information and maximal squared correlation decay as Θ(log⁑log⁑nlog⁑n)\Theta(\frac{\log\log n}{\log n}), which is in stark contrast with the exponential decay in chains of discrete channels. Similarly, the behavior of noisy circuits (composed of gates with bounded fan-in) and broadcasting of information on trees (of bounded degree) does not experience threshold behavior in the signal-to-noise ratio (SNR). Namely, unlike the case of discrete channels, the probability of bit error stays bounded away from 121\over 2 regardless of the SNR.Comment: revised; include appendix B on contraction coefficient for mutual information on general alphabet

    Computational barriers in minimax submatrix detection

    Get PDF
    This paper studies the minimax detection of a small submatrix of elevated mean in a large matrix contaminated by additive Gaussian noise. To investigate the tradeoff between statistical performance and computational cost from a complexity-theoretic perspective, we consider a sequence of discretized models which are asymptotically equivalent to the Gaussian model. Under the hypothesis that the planted clique detection problem cannot be solved in randomized polynomial time when the clique size is of smaller order than the square root of the graph size, the following phase transition phenomenon is established: when the size of the large matrix pβ†’βˆžp\to\infty, if the submatrix size k=Θ(pΞ±)k=\Theta(p^{\alpha}) for any α∈(0,2/3)\alpha\in(0,{2}/{3}), computational complexity constraints can incur a severe penalty on the statistical performance in the sense that any randomized polynomial-time test is minimax suboptimal by a polynomial factor in pp; if k=Θ(pΞ±)k=\Theta(p^{\alpha}) for any α∈(2/3,1)\alpha\in({2}/{3},1), minimax optimal detection can be attained within constant factors in linear time. Using Schatten norm loss as a representative example, we show that the hardness of attaining the minimax estimation rate can crucially depend on the loss function. Implications on the hardness of support recovery are also obtained.Comment: Published at http://dx.doi.org/10.1214/14-AOS1300 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Peak-to-average power ratio of good codes for Gaussian channel

    Get PDF
    Consider a problem of forward error-correction for the additive white Gaussian noise (AWGN) channel. For finite blocklength codes the backoff from the channel capacity is inversely proportional to the square root of the blocklength. In this paper it is shown that codes achieving this tradeoff must necessarily have peak-to-average power ratio (PAPR) proportional to logarithm of the blocklength. This is extended to codes approaching capacity slower, and to PAPR measured at the output of an OFDM modulator. As a by-product the convergence of (Smith's) amplitude-constrained AWGN capacity to Shannon's classical formula is characterized in the regime of large amplitudes. This converse-type result builds upon recent contributions in the study of empirical output distributions of good channel codes
    • …
    corecore