12,384 research outputs found
Superspace Formulation in a Three-Algebra Approach to D=3, N=4,5 Superconformal Chern-Simons Matter Theories
We present a superspace formulation of the D=3, N=4,5 superconformal
Chern-Simons Matter theories, with matter supermultiplets valued in a
symplectic 3-algebra. We first construct an N=1 superconformal action, and then
generalize a method used by Gaitto and Witten to enhance the supersymmetry from
N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra
properly and proposing a new super-potential term, we construct the N=4
superconformal Chern-Simons matter theories in terms of two sets of generators
of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by
requiring that the supersymmetry transformations are closed on-shell. The
relationship between the 3-algebras, Lie superalgebras, Lie algebras and
embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H.
Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also
clarified. The general N=4,5 superconformal Chern-Simons matter theories in
terms of ordinary Lie algebras can be rederived in our 3-algebra approach. All
known N=4,5 superconformal Chern-Simons matter theories can be recovered in the
present superspace formulation for super-Lie-algebra realization of symplectic
3-algebras.Comment: 37 pages, minor changes, published in PR
New physics effects on top quark spin correlation and polarization at the LHC: a comparative study in different models
Extensions of the Standard Model often predict new chiral interactions for
top quark, which will contribute to top quark spin correlation and polarization
in production at the LHC. In this work, under the constraints from
the current Tevatron measurements, a comparative study of the spin correlation
and polarization is performed in three new physics models: the minimal
supersymmetric model without R-parity (RPV-MSSM), the third-generation enhanced
left-right model and the axigluon model. We find that the polarization
asymmetry may be enhanced to the accessible level in all these models while the
correction to the spin correlation may be detectable in the axigluon model and
the RPV-MSSM with couplings.Comment: Version in PRD (figs updated and discussions added
Gaussian-shaped Optical Frequency Comb Generation for Microwave Photonic Filtering
Using only electro-optic modulators, we generate a 41-line 10-GHz
Gaussian-shaped optical frequency comb. We use this comb to demonstrate
apodized microwave photonic filters with greater than 43-dB sidelobe
suppression without the need for a pulse shaper.Comment: 3 pages, 4 figure
The First Calculation for the Mass of the Ground Glueball State on Lattice
Under the quenched approximation, we perform a lattice calculation for the
mass of the ground glueball state in channel on a
lattice. Our calculation shows that the mass of this state is
, which rules out the or mainly
glueball interpretation for .Comment: 10 pages and 1 figur
The black hole fundamental plane from a uniform sample of radio and X-ray emitting broad line AGNs
We derived the black hole fundamental plane relationship among the 1.4GHz
radio luminosity (L_r), 0.1-2.4keV X-ray luminosity (L_X), and black hole mass
(M) from a uniform broad line SDSS AGN sample including both radio loud and
radio quiet X-ray emitting sources. We found in our sample that the fundamental
plane relation has a very weak dependence on the black hole mass, and a tight
correlation also exists between the Eddington luminosity scaled X-ray and radio
luminosities for the radio quiet subsample. Additionally, we noticed that the
radio quiet and radio loud AGNs have different power-law slopes in the
radio--X-ray non-linear relationship. The radio loud sample displays a slope of
1.39, which seems consistent with the jet dominated X-ray model. However, it
may also be partly due to the relativistic beaming effect. For radio quiet
sample the slope of the radio--X-ray relationship is about 0.85, which is
possibly consistent with the theoretical prediction from the accretion flow
dominated X-ray model. We briefly discuss the reason why our derived
relationship is different from some previous works and expect the future
spectral studies in radio and X-ray bands on individual sources in our sample
to confirm our result.Comment: 23 pages, 7 figures, ApJ accepte
Real-time Intravascular Photoacoustics
The rupture of vulnerable atherosclerotic plaque is the most frequent cause of acute cardiovascular events and sudden cardiac deaths. The identification of the vulnerable plaque, which is believed to be related to the structure and composition of the plaque, can greatly benefit the management of the cardiovascular disease in clinics. Intravascular photoacoustic (IVPA) imaging can characterize the composition of the plaque based on the optical contrast between different tissue types, which can be easily applied by performing IVPA imaging at different wavelengths for different imaging targets. Combined IVPA/US imaging shows great potentials to image the vulnerable atherosclerotic plaque, morphologically (co-registered IVUS image) and compositionally (especially lipid-rich plaque), and is becoming a powerful tool to guide the assessment and treatment of the atherosclerotic plaque lesions.
The aim of this thesis is to develop a prototype of fast IVPA/US imaging system capable of performing in vivo experiments on swine model, accelerating the translation of IVPA/US imaging toward clinical application
Persistent spin current in mesoscopic ferrimagnetic spin ring
Using a semiclassical approach, we study the persistent magnetization current
of a mesoscopic ferrimagnetic ring in a nonuniform magnetic field. At zero
temperature, there exists persistent spin current because of the quantum
fluctuation of magnons, similar to the case of an antiferromagnetic spin ring.
At low temperature, the current shows activation behavior because of the
field-induced gap. At higher temperature, the magnitude of the spin current is
proportional to temperature T, similar to the reported result of a
ferromagnetic spin ring.Comment: 6 pages, 3 figures, one more reference adde
Relative entropy of entanglement of a kind of two qubit entangled states
We in this paper strictly prove that some block diagonalizable two qubit
entangled state with six none zero elements reaches its quantum relative
entropy entanglement by the a separable state having the same matrix structure.
The entangled state comprises local filtering result state as a special case.Comment: 5 page
Small molecule-mediated tribbles homolog 3 promotes bone formation induced by bone morphogenetic protein-2.
Although bone morphogenetic protein-2 (BMP2) has demonstrated extraordinary potential in bone formation, its clinical applications require supraphysiological milligram-level doses that increase postoperative inflammation and inappropriate adipogenesis, resulting in well-documented life-threatening cervical swelling and cyst-like bone formation. Recent promising alternative biomolecular strategies are toward promoting pro-osteogenic activity of BMP2 while simultaneously suppressing its adverse effects. Here, we demonstrated that small molecular phenamil synergized osteogenesis and bone formation with BMP2 in a rat critical size mandibular defect model. Moreover, we successfully elicited the BMP2 adverse outcomes (i.e. adipogenesis and inflammation) in the mandibular defect by applying high dose BMP2. Phenamil treatment significantly improves the quality of newly formed bone by inhibiting BMP2 induced fatty cyst-like structure and inflammatory soft-tissue swelling. The observed positive phenamil effects were associated with upregulation of tribbles homolog 3 (Trib3) that suppressed adipogenic differentiation and inflammatory responses by negatively regulating PPARγ and NF-κB transcriptional activities. Thus, use of BMP2 along with phenamil stimulation or Trib3 augmentation may be a promising strategy to improve clinical efficacy and safety of current BMP therapeutics
Recommended from our members
A Robust Gene Expression Prognostic Signature for Overall Survival in High-Grade Serous Ovarian Cancer.
The objective of this research was to develop a robust gene expression-based prognostic signature and scoring system for predicting overall survival (OS) of patients with high-grade serous ovarian cancer (HGSOC). Transcriptomic data of HGSOC patients were obtained from six independent studies in the NCBI GEO database. Genes significantly deregulated and associated with OS in HGSOCs were selected using GEO2R and Kaplan-Meier analysis with log-rank testing, respectively. Enrichment analysis for biological processes and pathways was performed using Gene Ontology analysis. A resampling/cross-validation method with Cox regression analysis was used to identify a novel gene expression-based signature associated with OS, and a prognostic scoring system was developed and further validated in nine independent HGSOC datasets. We first identified 488 significantly deregulated genes in HGSOC patients, of which 232 were found to be significantly associated with their OS. These genes were significantly enriched for cell cycle division, epithelial cell differentiation, p53 signaling pathway, vasculature development, and other processes. A novel 11-gene prognostic signature was identified and a prognostic scoring system was developed, which robustly predicted OS in HGSOC patients in 100 sampling test sets. The scoring system was further validated successfully in nine additional HGSOC public datasets. In conclusion, our integrative bioinformatics study combining transcriptomic and clinical data established an 11-gene prognostic signature for robust and reproducible prediction of OS in HGSOC patients. This signature could be of clinical value for guiding therapeutic selection and individualized treatment
- …