121 research outputs found

    Backdoor Attack on Hash-based Image Retrieval via Clean-label Data Poisoning

    Full text link
    A backdoored deep hashing model is expected to behave normally on original query images and return the images with the target label when a specific trigger pattern presents. To this end, we propose the confusing perturbations-induced backdoor attack (CIBA). It injects a small number of poisoned images with the correct label into the training data, which makes the attack hard to be detected. To craft the poisoned images, we first propose the confusing perturbations to disturb the hashing code learning. As such, the hashing model can learn more about the trigger. The confusing perturbations are imperceptible and generated by optimizing the intra-class dispersion and inter-class shift in the Hamming space. We then employ the targeted adversarial patch as the backdoor trigger to improve the attack performance. We have conducted extensive experiments to verify the effectiveness of our proposed CIBA. Our code is available at https://github.com/KuofengGao/CIBA.Comment: Accepted by BMVC 202

    The direct observation of ferromagnetic domain of single crystal CrSiTe3

    Get PDF
    Layered van der Waals interacting system that can be exfoliated to few layers are promising for exploring fundamental physics with rich electronic and optical properties. Combining the emerging phenomenon with long-range magnetic orders could lead to novel potential ultra-compact spintronics. Recently, CrXTe3 (X= Ge, Si) were reported that can persist magnetism after being exfoliated to few layers, however the magnetic domain structure in layered or bulk single crystal has remained unexplored. Here we choose CrSiTe3 single crystal as a model system, combining low-temperature magnetic force microscope, to demonstrate the magnetic domain structure, as well as the domain evolution in the presence of magnetic field, which is consistent with the magnetic behaviors measured by Magnetic Properties Measurement System (MPMS). Our result gives a simple portray of the magnetic properties of single crystal CrSiTe3, which provides a basis for the future research on magnetic layered van der Waals interacting system in potential application at 2-dimensional limit

    Hetero2^2Net: Heterophily-aware Representation Learning on Heterogenerous Graphs

    Full text link
    Real-world graphs are typically complex, exhibiting heterogeneity in the global structure, as well as strong heterophily within local neighborhoods. While a growing body of literature has revealed the limitations of common graph neural networks (GNNs) in handling homogeneous graphs with heterophily, little work has been conducted on investigating the heterophily properties in the context of heterogeneous graphs. To bridge this research gap, we identify the heterophily in heterogeneous graphs using metapaths and propose two practical metrics to quantitatively describe the levels of heterophily. Through in-depth investigations on several real-world heterogeneous graphs exhibiting varying levels of heterophily, we have observed that heterogeneous graph neural networks (HGNNs), which inherit many mechanisms from GNNs designed for homogeneous graphs, fail to generalize to heterogeneous graphs with heterophily or low level of homophily. To address the challenge, we present Hetero2^2Net, a heterophily-aware HGNN that incorporates both masked metapath prediction and masked label prediction tasks to effectively and flexibly handle both homophilic and heterophilic heterogeneous graphs. We evaluate the performance of Hetero2^2Net on five real-world heterogeneous graph benchmarks with varying levels of heterophily. The results demonstrate that Hetero2^2Net outperforms strong baselines in the semi-supervised node classification task, providing valuable insights into effectively handling more complex heterogeneous graphs.Comment: Preprin

    LasTGL: An Industrial Framework for Large-Scale Temporal Graph Learning

    Full text link
    Over the past few years, graph neural networks (GNNs) have become powerful and practical tools for learning on (static) graph-structure data. However, many real-world applications, such as social networks and e-commerce, involve temporal graphs where nodes and edges are dynamically evolving. Temporal graph neural networks (TGNNs) have progressively emerged as an extension of GNNs to address time-evolving graphs and have gradually become a trending research topic in both academics and industry. Advancing research and application in such an emerging field necessitates the development of new tools to compose TGNN models and unify their different schemes for dealing with temporal graphs. In this work, we introduce LasTGL, an industrial framework that integrates unified and extensible implementations of common temporal graph learning algorithms for various advanced tasks. The purpose of LasTGL is to provide the essential building blocks for solving temporal graph learning tasks, focusing on the guiding principles of user-friendliness and quick prototyping on which PyTorch is based. In particular, LasTGL provides comprehensive temporal graph datasets, TGNN models and utilities along with well-documented tutorials, making it suitable for both absolute beginners and expert deep learning practitioners alike.Comment: Preprint; Work in progres
    corecore