163 research outputs found

    Biomedicals from Bone

    Get PDF
    The realm of biomaterials, under which biomedical materials can be categorised, has a broad definition base and recognises materials that are synthesized or naturally sourced. Biomaterials are normally those that come into contact with live tissue and physiological fluids. They have applications as prostheses to replace lost function of joints or to replace bone tissue, for diagnosing medical conditions, as a form of therapy, or as a storage unit. The diversity and scope of biomaterials science research, and especially its application to the improvement of trauma, disease, and congenital defects in the human condition, are making this branch of science increasingly dominant and topical in many countries. An exciting aspect is that such research is interdisciplinary. The varied problems of the human condition that biomaterials research addresses occupy the efforts not only of medical doctors who act as the end users of such technology, but also those of chemists, physicists, engineers, and biologists in creating the technological advances. Chemistry, in particular, plays a major role in such research, after all it is the foundation stone on which biomaterials polymer science and biomedical scaffold materials are built

    Multi Resonant Boundary Contour System

    Full text link

    A Recurrent Cooperative/Competitive Field for Segmentation of Magnetic Resonance Brain Imagery

    Full text link
    The Grey-White Decision Network is introduced as an application of an on-center, off-surround recurrent cooperative/competitive network for segmentation of magnetic resonance imaging (MRI) brain images. The three layer dynamical system relaxes into a solution where each pixel is labeled as either grey matter, white matter, or "other" matter by considering raw input intensity, edge information, and neighbor interactions. This network is presented as an example of applying a recurrent cooperative/competitive field (RCCF) to a problem with multiple conflicting constraints. Simulations of the network and its phase plane analysis are presented

    Liquid Chromatography-Mass Spectrometry Analysis of Dysfunctional Mitochondrial Metabolism: Insights into Rotenone Toxicity and Friedreichâ\u27s Ataxia

    Get PDF
    Mitochondrial dysfunction plays a role in a wide range of diseases resulting in an enormous public health burden. The goal of this thesis is to identify metabolic pathways that are disrupted in response to mitochondrial insults. A large proportion of this work is based on the generation of stable isotope labelled metabolites to allow for the rigorous quantification of intracellular metabolites by liquid chromatography-mass spectrometry. Once developed, this methodology was employed in cell culture models initially to characterize an unidentified acyl-CoA thioester induced by propionate metabolism. This novel pathway was identified as the direct formation of 2-methyl-2-pentenoyl-CoA, and using isotopic labeling by metabolic precursors served as a critical component to this pathway elucidation. These same techniques were then applied to studying rotenone, a mitochondrial complex I inhibitor associated with Parkinsonâ??s disease. Previous work by our group has shown that rotenone inhibits components of glucose metabolism. As demonstrated in this thesis, lipid oxidation and glutamine anaplerosis serve as important compensatory mechanisms in this setting. Furthermore, chiral analysis of 2-hydroxyglutarate, a metabolite linked to glutamine metabolism, revealed stereospecific alterations in response to rotenone. These previously unknown metabolic adaptations induced by rotenone may contribute to neurological phenotypes resulting from diminished complex I activity. Finally, a collaborative effort was initiated to study metabolic defects in Friedreichâ??s ataxia, a genetic disease suspected to occur, in part, due to deficiencies in mitochondrial complex I. Utilizing isolated platelets in combination with isotopic labeling it was shown that Friedreichâ??s ataxia patients exhibit diminished glucose metabolism with a concomitant increase in lipid oxidation. Taken together these findings suggest adaptations to glucose and lipid metabolism are metabolic characteristics resulting from disrupted mitochondrial function across multiple models, and description of these disruptions gives insight into basic metabolic biotransformation, toxicology, and etiology of poorly understood diseases

    Rapid turnover of T cells in acute infectious mononucleosis.

    Full text link
    During acute infectious mononucleosis (AIM), large clones of Epstein-Barr virus-specific T lymphocytes are produced. To investigate the dynamics of clonal expansion, we measured cell proliferation during AIM using deuterated glucose to label DNA of dividing cells in vivo, analyzing cells according to CD4, CD8 and CD45 phenotype. The proportion of labeled CD8(+)CD45R0(+) T lymphocytes was dramatically increased in AIM subjects compared to controls (mean 17.5 versus 2.8%/day; p<0.005), indicating very rapid proliferation. Labeling was also increased in CD4(+)CD45R0(+) cells (7.1 versus 2.1%/day; p<0.01), but less so in CD45RA(+) cells. Mathematical modeling, accounting for death of labeled cells and changing pool sizes, gave estimated proliferation rates in CD8(+)CD45R0(+) cells of 11-130% of cells proliferating per day (mean 47%/day), equivalent to a doubling time of 1.5 days and an appearance rate in blood of about 5 x 10(9) cells/day (versus 7 x 10(7) cells/day in controls). Very rapid death rates were also observed amongst labeled cells (range 28-124, mean 57%/day),indicating very short survival times in the circulation. Thus, we have shown direct evidence for massive proliferation of CD8(+)CD45R0(+) T lymphocytes in AIM and demonstrated that rapid cell division continues concurrently with greatly accelerated rates of cell disappearance

    Coherent Mixing of Singlet and Triplet States in Acrolein and Ketene: A Computational Strategy for Simulating the Electron–Nuclear Dynamics of Intersystem Crossing

    Get PDF
    We present a theoretical study of intersystem crossing (ISC) in acrolein and ketene with the Ehrenfest method that can describe a superposition of singlet and triplet states. Our simulations illustrate a new mechanistic effect of ISC, namely, that a superposition of singlets and triplets yields nonadiabatic dynamics characteristic of that superposition rather than the constituent state potential energy surfaces. This effect is particularly significant in ketene, where mixing of singlet and triplet states along the approach to a singlet/singlet conical intersection occurs, with the spin–orbit coupling (SOC) remaining small throughout. In both cases, the effects require many recrossings of the singlet/triplet state crossing seam, consistent with the textbook treatment of ISC

    Unraveling the Ultrafast Photochemical Dynamics of Nitrobenzene in Aqueous Solution

    Get PDF
    Nitroaromatic compounds are major constituents of the brown carbon aerosol particles in the troposphere that absorb near-ultraviolet (UV) and visible solar radiation and have a profound effect on the Earth’s climate. The primary sources of brown carbon include biomass burning, forest fires, and residential burning of biofuels, and an important secondary source is photochemistry in aqueous cloud and fog droplets. Nitrobenzene is the smallest nitroaromatic molecule and a model for the photochemical behavior of larger nitroaromatic compounds. Despite the obvious importance of its droplet photochemistry to the atmospheric environment, there have not been any detailed studies of the ultrafast photochemical dynamics of nitrobenzene in aqueous solution. Here, we combine femtosecond transient absorption spectroscopy, time-resolved infrared spectroscopy, and quantum chemistry calculations to investigate the primary steps following the near-UV (λ ≥ 340 nm) photoexcitation of aqueous nitrobenzene. To understand the role of the surrounding water molecules in the photochemical dynamics of nitrobenzene, we compare the results of these investigations with analogous measurements in solutions of methanol, acetonitrile, and cyclohexane. We find that vibrational energy transfer to the aqueous environment quenches internal excitation, and therefore, unlike the gas phase, we do not observe any evidence for formation of photoproducts on timescales up to 500 ns. We also find that hydrogen bonding between nitrobenzene and surrounding water molecules slows the S1/S0 internal conversion process

    Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation

    Get PDF
    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation

    Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Get PDF
    CD4(+) T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i) that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+) cells, and (ii) that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+) compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+) T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p) and disappearance (d*) rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul) participated. CCR5-expression defined a CD4(+) subpopulation of predominantly CD45R0(+) memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+) vs CCR5(-); healthy controls; P<0.01). Conversely, CXCR4 expression defined CD4(+) T-cells (predominantly CD45RA(+) naive cells) with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+)CD45R0(+)CD4(+) memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05), naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9) or X4-tropic (n = 4). Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively). Our data are most consistent with models in which CD4(+) T-cell loss is primarily driven by non-specific immune activation
    corecore