118 research outputs found
Manuel Johnson's tide record at St. Helena
The astronomer Manuel Johnson, a future President of the Royal Astronomical Society, recorded the ocean tides with his own instrument at St. Helena in 1826–1827, while waiting for an observatory to be built. It is an important record in the history of tidal science, as the only previous measurements at St. Helena had been those made by Nevil Maskelyne in 1761, and there were to be no other systematic measurements until the late 20th century. Johnson's tide gauge, of a curious but unique design, recorded efficiently the height of every tidal high and low water for at least 13 months, in spite of requiring frequent re-setting. These heights compare very reasonably with a modern tidal synthesis based on present-day tide gauge measurements from the same site. Johnson's method of timing is unknown, but his calculations of lunar phases suggest that his tidal measurements were recorded in Local Apparent Time. Unfortunately, the recorded times are found to be seriously and variably lagged by many minutes. Johnson's data have never been fully published, but his manuscripts have been safely archived and are available for inspection at Cambridge University. His data have been converted to computer files as part of this study for the benefit of future researchers
Quantifying recent acceleration in sea level unrelated to internal climate variability
Sea level observations suggest that the rate of sea level rise has accelerated during the last 20?years. However, the presence of considerable decadal-scale variability, especially on a regional scale, makes it difficult to assess whether the observed changes are due to natural or anthropogenic causes. Here we use a regression model with atmospheric pressure, wind, and climate indices as independent variables to quantify the contribution of internal climate variability to the sea level at nine tide gauges from around the world for the period 1920–2011. Removing this contribution reveals a statistically significant acceleration (0.022?±?0.015?mm/yr2) between 1952 and 2011, which is unique over the whole period. Furthermore, we have found that the acceleration is increasing over time. This acceleration appears to be the result of increasing greenhouse gas concentrations, along with changes in volcanic forcing and tropospheric aerosol loading
Preface: Developments in the science and history of tides
This special issue marks the 100th anniversary of the founding of the Liverpool Tidal Institute (LTI), one of a number of important scientific developments in 1919. The preface gives a brief history of how the LTI came about and the roles of its first two directors, Joseph Proudman and Arthur Doodson. It also gives a short overview of the research on tides at the LTI through the years. Summaries are given of the 26 papers in the special issue. It will be seen that the topics of many of them could be thought of as providing a continuation of the research first undertaken at the LTI. Altogether, they provide an interesting snapshot of work on tides now being made by groups around the world
Recommended from our members
Nodal variations and long-term changes in the main tides on the coasts of China
The long-term changes in the main tidal constituents (O1, K1, M2, N2, and S2) along the coasts of China and in adjacent seas are investigated based on 17 tide-gauge records covering the period 1954–2012. The observed 18.61 year nodal modulations of the diurnal constituents O1 and K1 are in agreement with the equilibrium tidal theory, except in the South China Sea. The observed modulations of the M2 and N2 amplitudes are smaller than theoretically predicted at the northern stations and larger at the southern stations. The discrepancies between the theoretically predicted nodal variations and the observations are discussed. The 8.85 year perigean cycle is identifiable in the N2 parameters at most stations, except those in the South China Sea. The radiational component of S2 contributes on average 16% of the observed S2 except in the Gulf of Tonkin, on the south coast, where it accounts for up to 65%. We confirmed the existence of nodal modulation in S2, which is stronger on the north coast. The semidiurnal tidal parameters show significant secular trends in the Bohai and Yellow Seas, on the north coast, and in the Taiwan Strait. The largest increase is found for M2 for which the amplitude increases by 4–7 mm/yr in the Yellow Sea. The potential causes for the linear trends in tidal constants are discussed
Measurement of trigger and cascade section runtimes in 6MV switches using fiber coupled photo detectors.
Since October 2007 Sandia National Laboratories has operated the refurbished Z machine at an improved load current of 26 MA yielding 400 TW of x-ray power. The current pulse shape to the load is controlled by 36 independently timed laser triggered gas switches. As part of the refurbishment effort, a fiber coupled laser spark detector system has been installed which is able to detect the laser generated plasma in situ inside the trigger section of the high voltage switch. In this paper we describe how this detection system can be used to characterize the discharge dynamics of these 5.9 MV, 820 kA switches
Forcing factors affecting sea level changes at the coast
We review the characteristics of sea level variability at the coast focussing on how it differs from the variability in the nearby deep ocean. Sea level variability occurs on all timescales, with processes at higher frequencies tending to have a larger magnitude at the coast due to resonance and other dynamics. In the case of some processes, such as the tides, the presence of the coast and the shallow waters of the shelves results in the processes being considerably more complex than offshore. However, ‘coastal variability’ should not always be considered as ‘short spatial scale variability’ but can be the result of signals transmitted along the coast from 1000s km away. Fortunately, thanks to tide gauges being necessarily located at the coast, many aspects of coastal sea level variability can be claimed to be better understood than those in the deep ocean. Nevertheless, certain aspects of coastal variability remain under-researched, including how changes in some processes (e.g., wave setup, river runoff) may have contributed to the historical mean sea level records obtained from tide gauges which are now used routinely in large-scale climate research
A century of sea level measurements at Newlyn, SW England
The Newlyn Tidal Observatory is the most important sea level station in the UK. It commenced operations in 1915 as part of the Second Geodetic Levelling of England and Wales, and the mean sea level determined from the tide gauge during the first six years (May 1915-April 1921) defined Ordnance Datum Newlyn (ODN) which became the national height datum for the whole of Great Britain. The 100 years of sea level data now available have contributed significantly to many studies in oceanography, geology and climate change. This paper marks the centenary of this important station by reviewing the sea level (and, more recently, detailed land level) measurements and Newlyn’s contributions to UK cartography, geodesy and sea-level science in general. Recommendations are made on how sea and land level measurements at Newlyn might be
enhanced in the future
- …