288 research outputs found

    Detection of a z=0.0515, 0.0522 absorption system in the QSO S4 0248+430 due to an intervening galaxy

    Get PDF
    In some of the few cases where the line of sight to a Quasi-Stellar Object (QSO) passes near a galaxy, the galaxy redshift is almost identical to an absorption redshift in the spectrum of the QSO. Although these relatively low redshift QSO-galaxy pairs may not be typical of the majority of the narrow heavy-element QSO absorption systems, they provide a direct measure of column densities in the outer parts of galaxies and some limits on the relative abundances of the gas. Observations are presented here of the QSO S4 0248+430 and a nearby anonymous galaxy (Kuhr 1977). The 14 second separation of the line of sight to the QSO (z sub e = 1.316) and the z=0.052 spiral galaxy, (a projected separation of 20 kpc ((h sub o = 50, q sub o = 0)), makes this a particularly suitable pair for probing the extent and content of gas in the galaxy. Low resolution (6A full width half maximum), long slit charge coupled device (CCD) spectra show strong CA II H and K lines in absorption at the redshift of the galaxy (Junkkarinen 1987). Higher resolution spectra showing both Ca II H and K and Na I D1 and D2 in absorption and direct images are reported here

    Temperature and Kinematics of CIV Absorption Systems

    Full text link
    We use Keck HIRES spectra of three intermediate redshift QSOs to study the physical state and kinematics of the individual components of CIV selected heavy element absorption systems. Fewer than 8 % of all CIV lines with column densities greater than 10^{12.5} cm^{-2} have Doppler parameters b < 6 km/s. A formal decomposition into thermal and non-thermal motion using the simultaneous presence of SiIV gives a mean thermal Doppler parameter b_{therm}(CIV) = 7.2 km/s, corresponding to a temperature of 38,000 K although temperatures possibly in excess of 300,000 K occur occasionally. We also find tentative evidence for a mild increase of temperature with HI column density. Non-thermal motions within components are typically small (< 10 km/s) for most systems, indicative of a quiescent environment. The two-point correlation function (TPCF) of CIV systems on scales up to 500 km/s suggests that there is more than one source of velocity dispersion. The shape of the TPCF can be understood if the CIV systems are caused by ensembles of objects with the kinematics of dwarf galaxies on a small scale, while following the Hubble flow on a larger scale. Individual high redshift CIV components may be the building blocks of future normal galaxies in a hierarchical structure formation scenario.Comment: submitted to the ApJ Letters, March 16, 1996 (in press); (13 Latex pages, 4 Postscript figures, and psfig.sty included

    The mapping class group and the Meyer function for plane curves

    Get PDF
    For each d>=2, the mapping class group for plane curves of degree d will be defined and it is proved that there exists uniquely the Meyer function on this group. In the case of d=4, using our Meyer function, we can define the local signature for 4-dimensional fiber spaces whose general fibers are non-hyperelliptic compact Riemann surfaces of genus 3. Some computations of our local signature will be given.Comment: 24 pages, typo adde

    Muscarinic modulation of conductances underlying the afterhyperpolarization in neurons of the rat basolateral amygdala

    Full text link
    The excitability level of pyramidal neurons in the basolateral amygdala (BLA) is greatly increased following muscarinic receptor activation, an effect associated with an increased rate of action potential firing and reduction of the afterhyperpolarization (AHP). We impaled BLA pyramidal neurons in slices of rat ventral forebrain with a single microelectrode to examine the currents underlying the AHP and spike frequency accomodation and determine their sensitivities to muscarinic modulation. In voltage-clamp, depolarizing steps were followed by biphasic outward tail currents, consisting of rapidly decaying (IFast) and slowly decaying (ISlow) current components. These corresponded temporally with the medium and slow portions of the AHP, respectively. The reversal potential or the IFast component of the AHP tail current shifted in the depolarizing direction with increases in the extracellular K+ concentration. The amplitude of IFast was reduced during perfusion of 0-Ca2+ medium or by superfusion of TEA (1-5 mM) or carbachol (10-40 [mu]M). It is suggested that IFast was produced by the rapidly decaying Ca2+-activated K+ current (IC) and the muscarinic-sensitive M-current (IM). The ISlow tail current component reversed at the estimated values for EK in medium containing either normal or elevated K+ levels. This component was eliminated by perfusion of 0-Ca2+ medium or inclusion of cyclic-AMP in the recording electrode. It was not blocked by TEA (5 mM) or apamin (50-500 nM), but was reduced by carbachol in a dose-dependent manner (IC50=0.5 [mu]M). Electrical stimulation cholinergic afferent pathways to the BLA produced inhibition of ISlow, an effect which was enhanced by eserine and prevented by atropine. Loss of the ISlow component was always accompanied by similar reductions in accomodation and the slow AHP. It was concluded that this tail current component resulted from the slowly decaying Ca2+-activated K+ current, IAHP. Thus, the muscarinic inhibition of IAHP contributes to the enhanced excitability exhibited by BLA pyramidal neurons following cholinergic stimulation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30577/1/0000212.pd

    Multiple effects of long-term morphine treatment on postsynaptic [beta]-adrenergic receptor function in hippocampus: an intracellular analysis

    Full text link
    We previously reported that [beta]-adrenergic receptors are increased in cerebral cortex and hippocampus in rats treated chronically with morphine and subsequently down-regulated after morphine withdrawal [22,23]. The changes in receptor density in hippocampus were accompanied by a corresponding super- and subsensitivity, respectively, in [beta]-adrenergic responsiveness, as assessed electrophysiologically by measuring the ability of isoproterenol to augment population spike responses in the slice. In this study, we compared the ability of isoproterenol to reduce the Ca2+-activated K+ slow afterhyperpolarization (slow AHP) in pyramidal neurons in hippocampal slices from opiate-naive and chronic morphine-treated rats to determine whether such changes in [beta]-adrenergic receptor function are localized postsynaptically. Chronic treatment of rats with morphine produced a 3.5-fold parallel shift to the left in the concentration-response curve for isoproterenol and reduced the EC50 from 4.8 +/- 1.3 to 1.4 +/- 0.5 nM. In contrast, sensitivity and maximal responsiveness to isoproterenol was markedly decreased in pyramidal neurons recorded in slices from morphine withdrawn animals. The concentration-response curves for inhibition of the slow AHP by carbachol or forskolin were not affected by chronic morphine treatment. However, blockade of the slow AHP by forskolin was significantly reduced in pyramidal neurons studied after morphine withdrawal. These data suggest that the increase in electrophysiological responsiveness to [beta]-adrenergic receptor stimulation found in hippocampus after chronic morphine treatment most likely resulted from an up-regulation in postsynaptic membrane receptors, whereas alterations occurring beyond the receptor level may be involved in the desentization that is associated with morphine withdrawal.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31332/1/0000241.pd
    • …
    corecore