9 research outputs found

    Forced triboelectrification of fine powders in particle wall collisions

    Get PDF
    Triboelectric separation as an inexpensive and environmentally friendly technique could contribute to material-specific sorting. However, the application as a widespread method is limited due to the complexity of the process. In particle wall collisions, various parameters like collision energy and angle, work function of the contact partners, humidity, surface roughness, etc. influence the particle charging in a hardly predictable way. This study investigates the possibilities of forced triboelectric particle charging by applying an electrical potential to the metal contact partner (copper/steel pipe). The variations included different pipe lengths (0.5 m–3 m), particle materials, and particle sizes for limestone. A distinction is made between the net charge of the particles and the positive, negative, and neutral mass fractions. The work functions of the investigated materials vary from about 3.2 eV to >8.5 eV for glass, limestone, artificial slag, and lithium aluminate particles. With the applied high-voltage potential, the particle net charge can be shifted linearly. For limestone, it is shown that the neutral fraction is highest at the Point of Zero Net Charge (PZNC). This observation may identify an approach for the material selective separation of one target component from a multi-material mixture

    Limitation in the performance of fine powder separation in a turbo air classifier

    Get PDF
    The deflector wheel classifier is a widely used device for the separation of fine powders in different industrial applications. The primary objective of the separation process is to achieve high-quality separation of fine powders characterized by a narrow particle size distribution and high separation sharpness. Theoretically, the reduction in the cut size is accomplished by decreasing the gas flow rate or increasing the rotational speed of the classifier, which amplifies the centrifugal forces compared to the drag forces exerted on the particles. This behavior is, indeed, observed in many cases, but it cannot be extrapolated arbitrarily. At their performance limit, classifiers may, against expectation, show an increase in cut size and, in addition, a reduction in the sharpness of the separation process. The limitation in the reduction in the cut size and in the improvement in the separation sharpness arises due to an imbalance between the operating rotational speed and flow rate, which results in a non-uniform flow field in the classifier. If the balance conditions are fulfilled, an optimum separation with a high separation sharpness can be achieved. In this work, CFD simulations validated by some experimental results are employed to represent this limitation, which is obtained by varying the operating parameters using different material densities with particles ranging from one to ten microns

    First integrals of Ginzburg-Landau equations and stability criteria for vortex-free state in unconventional superconductors

    Full text link
    The first integrals of the Ginzburg-Landau equations for a vortex-free state of superconductors with different mixed symmetries of the order parameter are found. The general boundary conditions for the order parameter at the ideal interface between the superconductor and vacuum are derived. Based on these integrals and boundary conditions, we analyze the stability criteria for vortex-free state in unconventional superconductors. The threshold field above which the Abrikosov vortices can enter the superconductor is found to be higher or equal to the thermodynamic critical field for all states under study.Comment: 8 pages, pdf file, no figure

    Development of a model for the separation characteristics of a deflector wheel classifier including particle collision and rebound behavior

    Get PDF
    Deflector wheel classifiers are widespread in industry for the separation of powders into fine and coarse powders. Even though this separation process has been known for quite some time, it is not yet fully understood, and existing models fail to precisely predict the separation characteristics. Due to the high throughput of deflector wheel classifiers, it is greatly beneficial to estimate the separation characteristics before the experiment. Here, the developed model critically examines the usual assumptions, such as ideal airflow, neglection of particle–wall and particle–particle interactions, or spherically-shaped particles. First, the investigation of the air flow using a Particle Image Velocimetry (PIV) system showed significant differences to the assumed ideal flow field, then particle sphericity and its influence on the interaction between the particles and the paddles of the deflector wheel was investigated and compared with particle rebound behavior on a static wall. Surprisingly, comminuted glass behaves similarly to comminuted limestone in multiple aspects and not like glass beads. To determine the number of particle–particle collisions, Discrete Element Method (DEM) simulations were performed. The aforementioned aspects found application in the model and the separation behavior was well-estimated

    Desoxidation von gasgetragenen Pulvern

    Get PDF
    Metallische Pulver gelten als wichtige Ausgangsmaterialien in vielen Fertigungsprozessen, z. B. bei FĂŒgeverfahren, additiver Fertigung, Beschichtung usw. Bei der Herstellung metallischer Pulver werden die PartikeloberflĂ€chen, selbst bei der Handhabung in der Inertgas-Umgebung, infolge von Sauerstoffspuren mit einer Oxidschicht bedeckt, welche fĂŒr die Weiterverarbeitung und die QualitĂ€t der Endprodukte negativ sein kann. Das Projekt zielt darauf ab, die Desoxidation metallischer Pulver durch Wechselwirkung mit aktivierten Wasserstoffspezies zu realisieren. Um dieses Ziel zu erreichen, wurden Pulver in einer Wirbelschicht mit den aktivierten Wasserstoffspezies in Kontakt gebracht. Die Aktivierung wurde mittels dielektrischer Barriere-Entladung (DBD) erzielt und mit den Resultaten der rein thermisch aktivierten Wasserstoffspezies verglichen. FĂŒr die Einbringung der DBD-aktivierten Spezies wurden verschiedenen Geometrien untersucht, welche vom konvektiven Transport der DBD-Spezies in die Wirbelschicht bis zu der direkten Erzeugung des Plasmas in der Wirbelschicht reichen. Anhand einer einfachen Analytik basierend auf der SchĂŒttdichte der Pulver konnte gezeigt werden, wie effektiv die verschiedenen Desoxidationsmethoden sind

    Development of a Model for the Separation Characteristics of a Deflector Wheel Classifier Including Particle Collision and Rebound Behavior

    Get PDF
    Deflector wheel classifiers are widespread in industry for the separation of powders into fine and coarse powders. Even though this separation process has been known for quite some time, it is not yet fully understood, and existing models fail to precisely predict the separation characteristics. Due to the high throughput of deflector wheel classifiers, it is greatly beneficial to estimate the separation characteristics before the experiment. Here, the developed model critically examines the usual assumptions, such as ideal airflow, neglection of particle–wall and particle–particle interactions, or spherically-shaped particles. First, the investigation of the air flow using a Particle Image Velocimetry (PIV) system showed significant differences to the assumed ideal flow field, then particle sphericity and its influence on the interaction between the particles and the paddles of the deflector wheel was investigated and compared with particle rebound behavior on a static wall. Surprisingly, comminuted glass behaves similarly to comminuted limestone in multiple aspects and not like glass beads. To determine the number of particle–particle collisions, Discrete Element Method (DEM) simulations were performed. The aforementioned aspects found application in the model and the separation behavior was well-estimated.DFG, 313858373, SPP 2045: Hochspezifische mehrdimensionale Fraktionierung von technischen Feinstpartikelsysteme

    Triboelectric charging and separation of fine powder mixtures

    Get PDF
    For increasingly finer powders, the material‐specific separation at high loadings is a challenging task, for instance in recycling processes. Here, a combination of triboelectric charging and electrostatic separation was investigated for powder mixtures of talcum and calcite. The dependencies of the triboelectric charge on the mass loading, the gas velocity, and the mixture ratio were investigated. While higher charge levels were achieved with increasing gas velocity, the mass loading had an opposite effect on the net charge. Although bipolar charge distributions were observed within pure materials and mixtures, electrical neutralization did not occur in the mixtures. Therefore, already in a non‐optimized setup, a decent degree of material enrichment (of up to 53 %) was found on the separating electrodes

    Analysis of Soot Particles Emitted from a Modern Light Duty Diesel Engine Running in Different Operating Conditions using Field Flow Fractionation and Granulometric Techniques

    No full text
    Soot particles emitted from a light duty (LD) Volkswagen diesel engine running at different operating points (speed and torque levels) are analyzed for mean size determination using a laser‐based three Wavelength Extinction Method (3‐WEM). For this reason, collected soot samples are suspended using an appropriate sample preparation technique with optimized conditions of sonication as it revealed its effect on the soot mean particle size measured by 3‐WEM. An online Scanning Mobility Particle Analyzer (SMPS) is also used to measure soot emission at identical engine operating points. Size values obtained from SMPS are lower than those of suspended soot samples obtained from 3‐WEM. The size discrepancies are mainly related to the required sample preparation procedure employed for 3‐WEM measurements. The engine operating points affect, differently, the size measurements obtained from SMPS and 3‐WEM. Sedimentation Field‐Flow Fractionation (SdFFF) is used for density determination of soot samples based on size measurements of fractions collected at peak maxima of fractograms using the off‐line hyphenation with 3‐WEM. It is assumed that a size dependent separation of soot particles occurred with a uniform particle density over the whole size distribution. An average density value is used for the conversion of soot fractograms to size distributions. Discrepancies are also found with size distribution profiles obtained from SMPS for the same engine operating points, due to the sample preparation procedure employed for SdFFF measurements

    Electronic Theory for Superconductivity in High-T c Cuprates and Sr2RuO4

    No full text
    corecore