1,751 research outputs found
Design principles of hardware-based phong shading and bump-mapping
The VISA+ hardware architecture is the first of a new generation of graphics accelerators designed primarily to render bump-, texture-, environment- and environment-bump-mapped polygons. This paper presents examples of the main graphical capabilities and discusses methods and simplifications used to create high quality images. One of the key concepts in the VISA+ design, the use of reflectance cubes, is predestined for environment mapping. In combination with bump- and texture-mapping it shows the strength of our new architecture. Furthermore it justifies some of the decisions made during simulation and development of the complex VISA+ architecture
Numerical simulation of heavy fermions in an SU(2)_L x SU(2)_R symmetric Yukawa model
An exploratory numerical study of the influence of heavy fermion doublets on
the mass of the Higgs boson is performed in the decoupling limit of a chiral
symmetric Yukawa model with mirror fermions. The
behaviour of fermion and boson masses is investigated at infinite bare quartic
coupling on , and lattices. A first
estimate of the upper bound on the renormalized quartic coupling as a function
of the renormalized Yukawa-coupling is given.Comment: 15 pp + 11 Figures appended as Postscript file
Vibratool
Function used to apply delay modulation to an input wave for the purpose of creating a more natural vibrato akin to that created on a violin.Architecture & Allied Art
Mass Spectrum and Bounds on the Couplings in Yukawa Models With Mirror-Fermions
The symmetric Yukawa model with mirror-fermions
in the limit where the mirror-fermion is decoupled is studied both analytically
and numerically. The bare scalar self-coupling is fixed at zero and
infinity. The phase structure is explored and the relevant phase transition is
found to be consistent with a second order one. The fermionic mass spectrum
close to that transition is discussed and a first non-perturbative estimate of
the influence of fermions on the upper and lower bounds on the renormalized
scalar self-coupling is given. Numerical results are confronted with
perturbative predictions.Comment: 7 (Latex) page
Bounds on the renormalized couplings in an SU(2)_L \otimes SU(2)_R symmetric Yukawa model
The vacuum stability lower bound on the mass of the Higgs boson is
numerically investigated in an symmetric Yukawa
model, which describes two heavy degenerate fermion doublets in the limit of
vanishing gauge couplings. Good agreement with perturbation theory is found,
although the couplings are strong. The upper bound on the fermion mass and
renormalized Yukawa coupling is also determined in the part of bare parameter
space where reflection positivity has been proven.Comment: 9 pages + 2 figures (appended as postscript files
Superconductivity at 17 K in Yttrium Metal under Nearly Hydrostatic Pressures to 89 GPa
In an experiment in a diamond anvil cell utilizing helium pressure medium,
yttrium metal displays a superconducting transition temperature which increases
monotonically from Tc ? 3.5 K at 30 GPa to 17 K at 89.3 GPa, one of the highest
transition temperatures for any elemental superconductor. The pressure
dependence of Tc differs substantially from that observed in previous studies
under quasihydrostatic pressure to 30 GPa. Remarkably, the dependence of Tc on
relative volume V/Vo is linear over the entire pressure range above 33 GPa,
implying that higher values of Tc are likely at higher pressures. For the
trivalent metals Sc, Y, La, Lu there appears to be some correlation between Tc
and the ratio of the Wigner-Seitz radius to the ion core radius.Comment: submitted for publicatio
Assembling the puzzle of superconducting elements: A Review
Superconductivity in the simple elements is of both technological relevance
and fundamental scientific interest in the investigation of superconductivity
phenomena. Recent advances in the instrumentation of physics under pressure
have enabled the observation of superconductivity in many elements not
previously known to superconduct, and at steadily increasing temperatures. This
article offers a review of the state of the art in the superconductivity of
elements, highlighting underlying correlations and general trends.Comment: Review, 10 pages, 11 figures, 97 references; to appear in Superc.
Sci. Techno
Partially quenched chiral perturbation theory and numerical simulations
The dependence of the pseudoscalar meson mass and decay constant is compared
to one-loop Partially Quenched Chiral Perturbation Theory (PQChPT) in a
numerical simulation with two light dynamical quarks. The characteristic
behaviour with chiral logarithms is observed. The values of the fitted
PQChPT-parameters are in a range close to the expectation in continuum in spite
of the fact that the lattice spacing is still large, namely a=0.28 fm.Comment: 11 pages, 3 figures; discussion of the results in section 3 extende
Effect of pressure on the Raman modes of antimony
The effect of pressure on the zone-center optical phonon modes of antimony in
the A7 structure has been investigated by Raman spectroscopy. The A_g and E_g
frequencies exhibit a pronounced softening with increasing pressure, the effect
being related to a gradual suppression of the Peierls-like distortion of the A7
phase relative to a cubic primitive lattice. Also, both Raman modes broaden
significantly under pressure. Spectra taken at low temperature indicate that
the broadening is at least partly caused by phonon-phonon interactions. We also
report results of ab initio frozen-phonon calculations of the A_g and E_g mode
frequencies. Presence of strong anharmonicity is clearly apparent in calculated
total energy versus atom displacement relations. Pronounced nonlinearities in
the force versus displacement relations are observed. Structural instabilities
of the Sb-A7 phase are briefly addressed in the Appendix.Comment: 10 pages, 8 figure
- …