7 research outputs found

    Which bridge to cross, which mountain to climb – Supramolecular Photocatalysis Outpacing Conventional Catalysis

    Full text link
    Unequivocal assignment of rate limiting steps in supramolecular photocatalysts is of utmost importance to rationally optimize photocatalytic activity. By spectroscopic and catalytic analysis of a series of three structurally similar [(tbbpy) 2 Ru-BL-Rh(Cp*)Cl] 3+ photocatalysts just differing in the central part (alkynyl, triazole or phenazine) of the bridging ligand (BL) we were able to derive design strategies for improved photocatalytic activity of this class of compounds (tbbpy = 4,4´-tert-butyl- 2,2´-bipyridine, Cp* = pentamethylcyclopentadienyl). Most importantly, not the rate of the transfer of the first electron towards the Rh III center but rather the rate at which a two-fold reduced Rh I species is generated can directly be correlated with the observed photocatalytic formation of NADH from NAD + . Interestingly, the complex which exhibited the fastest intramolecular electron transfer kinetics for the first electron is not the one that allowed the fastest photocatalysis. With the photocatalytically most efficient alkynyl linked system, it was even possible to overcome the rate of thermal NADH formation. Moreover, for this photocatalyst loss of the alkynyl functionality under photocatalytic conditions was identified as an important deactivation pathway

    How to Organize a Photocatalysis Conference Online (on a Budget)

    Full text link
    Originally planned as an on-site meeting, the inaugural CataLight Young Scientist Symposium (CYSS) took place as a fully online conference in November 2020. Dedicated to various aspects of photocatalysis, namely synthesis, theory, characterization, and application, CYSS aimed to provide a stage for early-career scientists to connect to each other and present their research to peers in the field. While still keeping a traditional on-site conference format including both plenary and poster sessions, several minor and major changes had to be applied to the format to deliver a full experience. In this report, we highlight key steps in the organization of such an online conference, laying a focus on using mostly open source software to minimize costs, and discuss differences to both on-site and other online conference formats.<br /

    Outpacing conventional nicotinamide hydrogenation catalysis by a strongly communicating heterodinuclear photocatalyst

    Full text link
    Unequivocal assignment of rate-limiting steps in supramolecular photocatalysts is of utmost importance to rationally optimize photocatalytic activity. By spectroscopic and catalytic analysis of a series of three structurally similar [(tbbpy)2Ru-BL-Rh(Cp*)Cl]3+ photocatalysts just differing in the central part (alkynyl, triazole or phenazine) of the bridging ligand (BL) we are able to derive design strategies for improved photocatalytic activity of this class of compounds (tbbpy = 4,4´-tert-butyl-2,2´-bipyridine, Cp* = pentamethylcyclopentadienyl). Most importantly, not the rate of the transfer of the first electron towards the RhIII center but rather the rate at which a two-fold reduced RhI species is generated can directly be correlated with the observed photocatalytic formation of NADH from NAD+. Interestingly, the complex which exhibits the fastest intramolecular electron transfer kinetics for the first electron is not the one that allows the fastest photocatalysis. With the photocatalytically most efficient alkynyl linked system, it is even possible to overcome the rate of thermal NADH formation by avoiding the rate-determining β-hydride elimination step. Moreover, for this photocatalyst loss of the alkynyl functionality under photocatalytic conditions is identified as an important deactivation pathway

    Photocathodes beyond NiO:charge transfer dynamics in a π‑conjugated polymer functionalized with Ruphotosensitizers

    Full text link
    International audienceA conductive polymer (poly(p-phenylenevinylene), PPV) was covalently modified with Ru-II complexes to develop an all-polymer photocathode as a conceptual alternative to dye-sensitized NiO, which is the current state-of-the-art photocathode in solar fuels research. Photocathodes require efficient light-induced charge-transfer processes and we investigated these processes within our photocathodes using spectroscopic and spectro-electrochemical techniques. Ultrafast hole-injection dynamics in the polymer were investigated by transient absorption spectroscopy and charge transfer at the electrode-electrolyte interface was examined with chopped-light chronoamperometry. Light-induced hole injection from the photosensitizers into the PPV backbone was observed within 10 ps and the resulting charge-separated state (CSS) recombined within similar to 5 ns. This is comparable to CSS lifetimes of conventional NiO-photocathodes. Chopped-light chronoamperometry indicates enhanced charge-transfer at the electrode-electrolyte interface upon sensitization of the PPV with the Ru-II complexes and p-type behavior of the photocathode. The results presented here show that the polymer backbone behaves like classical molecularly sensitized NiO photocathodes and operates as a hole accepting semiconductor. This in turn demonstrates the feasibility of all-polymer photocathodes for application in solar energy conversion

    Sonstige unmittelbare Eigenschaften der Elektronenhülle

    Full text link
    corecore