1,307 research outputs found
Effects of anterior temporal lobe resection on cortical morphology
Anterior temporal lobe resection (ATLR) is a surgical procedure to treat
drug-resistant temporal lobe epilepsy (TLE). Resection may involve large
amounts of cortical tissue. Here, we examine the effects of this surgery on
cortical morphology measured in independent variables both near the resection
and remotely.
We studied 101 individuals with TLE (55 left, 46 right onset) who underwent
ATLR. For each individual we considered one pre-surgical MRI and one follow-up
MRI 2 to 13 months after surgery. We used our newly developed surface-based
method to locally compute traditional morphological variables (average cortical
thickness, exposed surface area, and total surface area), and the independent
measures , , and , where measures white matter tension,
captures isometric scaling, and contains the remaining information about
cortical shape. Data from 924 healthy controls was included to account for
healthy ageing effects occurring during scans. A SurfStat random field theory
clustering approach assessed changes across the cortex caused by ATLR.
Compared to preoperative data, surgery had marked effects on all
morphological measures. Ipsilateral effects were located in the orbitofrontal
and inferior frontal gyri, the pre- and postcentral gyri and supramarginal
gyrus, and the lateral occipital gyrus and lingual cortex. Contralateral
effects were in the lateral occipital gyrus, and inferior frontal gyrus and
frontal pole.
The restructuring following ATLR is reflected in widespread morphological
changes, mainly in regions near the resection, but also remotely in regions
that are structurally connected to the anterior temporal lobe. The causes could
include mechanical effects, Wallerian degeneration, or compensatory plasticity.
The study of independent measures revealed additional effects compared to
traditional measures
Quantitative susceptibility mapping identifies hippocampal and other subcortical grey matter tissue composition changes in temporal lobe epilepsy
Temporal lobe epilepsy (TLE) is associated with widespread brain alterations. Using quantitative susceptibility mapping (QSM) alongside transverse relaxation rate (
), we investigated regional brain susceptibility changes in 36 patients with left-sided (LTLE) or right-sided TLE (RTLE) secondary to hippocampal sclerosis, and 27 healthy controls (HC). We compared three susceptibility calculation methods to ensure image quality. Correlations of susceptibility and
with age of epilepsy onset, frequency of focal-to-bilateral tonicâclonic seizures (FBTCS), and neuropsychological test scores were examined. Weak-harmonic QSM (WH-QSM) successfully reduced noise and removed residual background field artefacts. Significant susceptibility increases were identified in the left putamen in the RTLE group compared to the LTLE group, the right putamen and right thalamus in the RTLE group compared to HC, and a significant susceptibility decrease in the left hippocampus in LTLE versus HC. LTLE patients who underwent epilepsy surgery showed significantly lower left-versus-right hippocampal susceptibility. Significant
changes were found between TLE and HC groups in the amygdala, putamen, thalamus, and in the hippocampus. Specifically, decreased R2* was found in the left and right hippocampus in LTLE and RTLE, respectively, compared to HC. Susceptibility and
were significantly correlated with cognitive test scores in the hippocampus, globus pallidus, and thalamus. FBTCS frequency correlated positively with ipsilateral thalamic and contralateral putamen susceptibility and with
in bilateral globi pallidi. Age of onset was correlated with susceptibility in the hippocampus and putamen, and with
in the caudate. Susceptibility and
changes observed in TLE groups suggest selective loss of low-myelinated neurons alongside iron redistribution in the hippocampi, predominantly ipsilaterally, indicating QSM's sensitivity to local pathology. Increased susceptibility and
in the thalamus and putamen suggest increased iron content and reflect disease severity
Volumetric and structural connectivity abnormalities co-localise in TLE
Patients with temporal lobe epilepsy (TLE) exhibit both volumetric and structural connectivity abnormalities relative to healthy controls. How these abnormalities inter-relate and their mechanisms are unclear. We computed grey matter volumetric changes and white matter structural connectivity abnormalities in 144 patients with unilateral TLE and 96 healthy controls. Regional volumes were calculated using T1-weighted MRI, while structural connectivity was derived using white matter fibre tractography from diffusion-weighted MRI. For each regional volume and each connection strength, we calculated the effect size between patient and control groups in a group-level analysis. We then applied hierarchical regression to investigate the relationship between volumetric and structural connectivity abnormalities in individuals. Additionally, we quantified whether abnormalities co-localised within individual patients by computing Dice similarity scores. In TLE, white matter connectivity abnormalities were greater when joining two grey matter regions with abnormal volumes. Similarly, grey matter volumetric abnormalities were greater when joined by abnormal white matter connections. The extent of volumetric and connectivity abnormalities related to epilepsy duration, but co-localisation did not. Co-localisation was primarily driven by neighbouring abnormalities in the ipsilateral hemisphere. Overall, volumetric and structural connectivity abnormalities were related in TLE. Our results suggest that shared mechanisms may underlie changes in both volume and connectivity alterations in patients with TLE
Predictors of long-term memory and network connectivity 10âyears after anterior temporal lobe resection.
OBJECTIVE
Anterior temporal lobe resection (ATLR) effectively controls seizures in medically refractory temporal lobe epilepsy but risks significant episodic memory decline. Beyond 1 year postoperatively, the influence of preoperative clinical factors on episodic memory and long-term network plasticity remain underexplored. Ten years post-ATLR, we aimed to determine biomarkers of successful memory network reorganization and establish presurgical features' lasting impact on memory function.
METHODS
Twenty-five ATLR patients (12 left-sided) and 10 healthy controls underwent a memory-encoding functional magnetic resonance imaging paradigm alongside neuropsychometry 10âyears postsurgery. Generalized psychophysiological interaction analyses modeled network functional connectivity of words/faces remembered, seeding from the medial temporal lobes (MTLs). Differences in successful memory connectivity were assessed between controls and left/right ATLR. Multivariate regressions and mixed-effect models probed preoperative phenotypes' effects on long-term memory outcomes.
RESULTS
Ten years post-ATLR, lower baseline functioning (verbal and performance intelligence quotient) and a focal memory impairment preoperatively predicted worse long-term memory outcomes. Poorer verbal memory was significantly associated with longer epilepsy duration and earlier onset age. Relative to controls, successful word and face encoding involved increased functional connectivity from both or remnant MTL seeds and contralesional parahippocampus/hippocampus after left/right ATLR. Irrespective of surgical laterality, successful memory encoding correlated with increased MTL-seeded connectivity to frontal (bilateral insula, right anterior cingulate), right parahippocampal, and bilateral fusiform gyri. Ten years postsurgery, better memory performance was correlated with contralateral frontal plasticity, which was disrupted with longer epilepsy duration.
SIGNIFICANCE
Our findings underscore the enduring nature of functional network reorganizations to provide long-term cognitive support. Ten years post-ATLR, successful memory formation featured stronger connections near resected areas and contralateral regions. Preoperative network disruption possibly influenced effectiveness of postoperative plasticity. These findings are crucial for enhancing long-term memory prediction and strategies for lasting memory rehabilitation
Altered Amygdala Volumes and Microstructure in Focal Epilepsy Patients With Tonic-Clonic Seizures, Ictal, and Post-convulsive Central Apnea
Objectives
Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death for patients with epilepsy; however, the pathophysiology remains unclear. Focalâtoâbilateral tonicâclonic seizures (FBTCS) are a major risk factor, and centrallyâmediated respiratory depression may increase the risk further. Here, we determined the volume and microstructure of the amygdala, a key structure that can trigger apnea in people with focal epilepsy, stratified by the presence or absence of FBTCS, ictal central apnea (ICA), and postâconvulsive central apnea (PCCA). Methods
Seventyâthree patients with focal impaired awareness seizures without FBTC seizures (FBTCneg group) and 30 with FBTCS (FBTCpos group) recorded during video electroencephalography (VEEG) with respiratory monitoring were recruited prospectively during presurgical investigations. We acquired highâresolution T1âweighted anatomic and multiâshell diffusion images, and computed neurite orientation dispersion and density imaging (NODDI) metrics in all patients with epilepsy and 69 healthy controls. Amygdala volumetric and microstructure alterations were compared between three groups: healthy subjects, FBTCneg and FBTCpos groups. The FBTCpos group was further subdivided by the presence of ICA and PCCA, verified by VEEG. Results
Bilateral amygdala volumes were significantly increased in the FBTCpos cohort compared to healthy controls and the FBTCneg group. Patients with recorded PCCA had the highest increase in bilateral amygdala volume of the FBTCpos cohort.
Amygdala neurite density index (NDI) values were decreased significantly in both the FBTCneg and FBTCpos groups relative to healthy controls, with values in the FBTCpos group being the lowest of the two. The presence of PCCA was associated with significantly lower NDI values vs the nonâapnea FBTCpos group (pâ=â0.004). Significance
Individuals with FBTCpos and PCCA show significantly increased amygdala volumes and disrupted architecture bilaterally, with greater changes on the left side. The structural alterations reflected by NODDI and volume differences may be associated with inappropriate cardiorespiratory patterns mediated by the amygdala, particularly after FBTCS. Determination of amygdala volumetric and architectural changes may assist identification of individuals at risk
Intracranial EEG structure-function coupling predicts surgical outcomes in focal epilepsy
Alterations to structural and functional brain networks have been reported
across many neurological conditions. However, the relationship between
structure and function -- their coupling -- is relatively unexplored,
particularly in the context of an intervention. Epilepsy surgery alters the
brain structure and networks to control the functional abnormality of seizures.
Given that surgery is a structural modification aiming to alter the function,
we hypothesized that stronger structure-function coupling preoperatively is
associated with a greater chance of post-operative seizure control. We
constructed structural and functional brain networks in 39 subjects with
medication-resistant focal epilepsy using data from intracranial EEG
(pre-surgery), structural MRI (pre-and post-surgery), and diffusion MRI
(pre-surgery). We investigated pre-operative structure-function coupling at two
spatial scales a) at the global iEEG network level and b) at the resolution of
individual iEEG electrode contacts using virtual surgeries. At global network
level, seizure-free individuals had stronger structure-function coupling
pre-operatively than those that were not seizure-free regardless of the choice
of interictal segment or frequency band. At the resolution of individual iEEG
contacts, the virtual surgery approach provided complementary information to
localize epileptogenic tissues. In predicting seizure outcomes,
structure-function coupling measures were more important than clinical
attributes, and together they predicted seizure outcomes with an accuracy of
85% and sensitivity of 87%. The underlying assumption that the structural
changes induced by surgery translate to the functional level to control
seizures is valid when the structure-functional coupling is strong. Mapping the
regions that contribute to structure-functional coupling using virtual
surgeries may help aid surgical planning
The Impact of Temporal Lobe Epilepsy Surgery on Picture Naming and its Relationship to Network Metric Change
Background:
Anterior temporal lobe resection (ATLR) is a successful treatment for medically-refractory temporal lobe epilepsy (TLE). In the language-dominant hemisphere, 30%- 50% of individuals experience a naming decline which can impact upon daily life. Measures of structural networks are associated with language performance pre-operatively. It is unclear if analysis of network measures may predict post-operative decline.
Methods:
White matter fibre tractography was performed on preoperative diffusion MRI of 44 left lateralised and left resection individuals with TLE to reconstruct the preoperative structural network. Resection masks, drawn on co-registered pre- and post-operative T1-weighted MRI scans, were used as exclusion regions on pre-operative tractography to estimate the post-operative network. Changes in graph theory metrics, cortical strength, betweenness centrality, and clustering coefficient were generated by comparing the estimated pre- and post-operative networks. These were thresholded based on the presence of the connection in each patient, ranging from 75% to 100% in steps of 5%. The average graph theory metric across thresholds was taken.
We incorporated leave-one-out cross-validation with smoothly clipped absolute deviation (SCAD) least absolute shrinkage and selection operator (LASSO) feature selection and a support vector classifier to assess graph theory metrics on picture naming decline. Picture naming was assessed via the Graded Naming Test preoperatively and at 3 and 12 months post-operatively and the outcome was classified using the reliable change index (RCI) to identify clinically significant decline. The best feature combination and model was selected using the area under the curve (AUC). The sensitivity, specificity and F1-score were also reported. Permutation testing was performed to assess the machine learning model and selected regions difference significance.
Results:
A combination of clinical and graph theory metrics were able to classify outcome of picture naming at 3 months with an AUC of 0.84. At 12 months, change in strength to cortical regions was best able to correctly classify outcome with an AUC of 0.86. Longitudinal analysis revealed that betweenness centrality was the best metric to identify patients who declined at 3 months, who will then continue to experience decline from 3-12 months. Both models were significantly higher AUC values than a random classifier.
Conclusion:
Our results suggest that inferred changes of network integrity were able to correctly classify picture naming decline after ATLR. These measures may be used to prospectively to identify patients who are at risk of picture naming decline after surgery and could potentially be utilised to assist tailoring the resection in order to prevent this decline
Computer-assisted planning for the insertion of stereoelectroencephalography electrodes for the investigation of drug-resistant focal epilepsy:an external validation study
OBJECTIVE One-third of cases of focal epilepsy are drug refractory, and surgery might provide a cure. Seizure-free outcome after surgery depends on the correct identification and resection of the epileptogenic zone. In patients with no visible abnormality on MRI, or in cases in which presurgical evaluation yields discordant data, invasive stereoelectroencephalography (SEEG) recordings might be necessary. SEEG is a procedure in which multiple electrodes are placed stereotactically in key targets within the brain to record interictal and ictal electrophysiological activity. Correlating this activity with seizure semiology enables identification of the seizure-onset zone and key structures within the ictal network. The main risk related to electrode placement is hemorrhage, which occurs in 1% of patients who undergo the procedure. Planning safe electrode placement for SEEG requires meticulous adherence to the following: 1) maximize the distance from cerebral vasculature, 2) avoid crossing sulcal pial boundaries (sulci), 3) maximize gray matter sampling, 4) minimize electrode length, 5) drill at an angle orthogonal to the skull, and 6) avoid critical neurological structures. The authors provide a validation of surgical strategizing and planning with EpiNav, a multimodal platform that enables automated computer-assisted planning (CAP) for electrode placement with user-defined regions of interest. METHODS Thirteen consecutive patients who underwent implantation of a total 116 electrodes over a 15-month period were studied retrospectively. Models of the cortex, gray matter, and sulci were generated from patient-specific whole-brain parcellation, and vascular segmentation was performed on the basis of preoperative MR venography. Then, the multidisciplinary implantation strategy and precise trajectory planning were reconstructed using CAP and compared with the implemented manually determined plans. Paired results for safety metric comparisons were available for 104 electrodes. External validity of the suitability and safety of electrode entry points, trajectories, and target-point feasibility was sought from 5 independent, blinded experts from outside institutions. RESULTS CAP-generated electrode trajectories resulted in a statistically significant improvement in electrode length, drilling angle, gray matter-sampling ratio, minimum distance from segmented vasculature, and risk (p < 0.05). The blinded external raters had various opinions of trajectory feasibility that were not statistically significant, and they considered a mean of 69.4% of manually determined trajectories and 62.2% of CAP-generated trajectories feasible; 19.4% of the CAP-generated electrode-placement plans were deemed feasible when the manually determined plans were not, whereas 26.5% of the manually determined electrode-placement plans were rated feasible when CAP-determined plans were not (no significant difference). CONCLUSIONS CAP generates clinically feasible electrode-placement plans and results in statistically improved safety metrics. CAP is a useful tool for automating the placement of electrodes for SEEG; however, it requires the operating surgeon to review the results before implantation, because only 62% of electrode-placement plans were rated feasible, compared with 69% of the manually determined placement plans, mainly because of proximity of the electrodes to unsegmented vasculature. Improved vascular segmentation and sulcal modeling could lead to further improvements in the feasibility of CAP-generated trajectories.</p
Complementary structural and functional abnormalities to localise epileptogenic tissue
BACKGROUND: When investigating suitability for epilepsy surgery, people with drug-refractory focal epilepsy may have intracranial EEG (iEEG) electrodes implanted to localise seizure onset. Diffusion-weighted magnetic resonance imaging (dMRI) may be acquired to identify key white matter tracts for surgical avoidance. Here, we investigate whether structural connectivity abnormalities, inferred from dMRI, may be used in conjunction with functional iEEG abnormalities to aid localisation of the epileptogenic zone (EZ), improving surgical outcomes in epilepsy. METHODS: We retrospectively investigated data from 43 patients (42% female) with epilepsy who had surgery following iEEG. Twenty-five patients (58%) were free from disabling seizures (ILAE 1 or 2) at one year. Interictal iEEG functional, and dMRI structural connectivity abnormalities were quantified by comparison to a normative map and healthy controls. We explored whether the resection of maximal abnormalities related to improved surgical outcomes, in both modalities individually and concurrently. Additionally, we suggest how connectivity abnormalities may inform the placement of iEEG electrodes pre-surgically using a patient case study. FINDINGS: Seizure freedom was 15 times more likely in patients with resection of maximal connectivity and iEEG abnormalities (p = 0.008). Both modalities separately distinguished patient surgical outcome groups and when used simultaneously, a decision tree correctly separated 36 of 43 (84%) patients. INTERPRETATION: Our results suggest that both connectivity and iEEG abnormalities may localise epileptogenic tissue, and that these two modalities may provide complementary information in pre-surgical evaluations. FUNDING: This research was funded by UKRI, CDT in Cloud Computing for Big Data, NIH, MRC, Wellcome Trust and Epilepsy Research UK
Complementary structural and functional abnormalities to localise epileptogenic tissue
When investigating suitability for surgery, people with drug-refractory focal
epilepsy may have intracranial EEG (iEEG) electrodes implanted to localise
seizure onset. Diffusion-weighted magnetic resonance imaging (dMRI) may be
acquired to identify key white matter tracts for surgical avoidance. Here, we
investigate whether structural connectivity abnormalities, inferred from dMRI,
may be used in conjunction with functional iEEG abnormalities to aid
localisation and resection of the epileptogenic zone (EZ), and improve surgical
outcomes in epilepsy.
We retrospectively investigated data from 43 patients with epilepsy who had
surgery following iEEG. Twenty five patients (58%) were free from disabling
seizures (ILAE 1 or 2) at one year. For all patients, T1-weighted and
diffusion-weighted MRIs were acquired prior to iEEG implantation. Interictal
iEEG functional, and dMRI structural connectivity abnormalities were quantified
by comparison to a normative map and healthy controls respectively.
First, we explored whether the resection of maximal (dMRI and iEEG)
abnormalities related to improved surgical outcomes. Second, we investigated
whether the modalities provided complementary information for improved
prediction of surgical outcome. Third, we suggest how dMRI abnormalities may be
useful to inform the placement of iEEG electrodes as part of the pre-surgical
evaluation using a patient case study.
Seizure freedom was 15 times more likely in those patients with resection of
maximal dMRI and iEEG abnormalities (p=0.008). Both modalities were separately
able to distinguish patient outcome groups and when combined, a decision tree
correctly separated 36 out of 43 (84%) patients based on surgical outcome.
Structural dMRI could be used in pre-surgical evaluations, particularly when
localisation of the EZ is uncertain, to inform personalised iEEG implantation
and resection.Comment: 5 figure
- âŠ