157 research outputs found

    DEEP—A tool for differential expression effector prediction

    Get PDF
    High-throughput methods for measuring transcript abundance, like SAGE or microarrays, are widely used for determining differences in gene expression between different tissue types, dignities (normal/malignant) or time points. Further analysis of such data frequently aims at the identification of gene interaction networks that form the causal basis for the observed properties of the systems under examination. To this end, it is usually not sufficient to rely on the measured gene expression levels alone; rather, additional biological knowledge has to be taken into account in order to generate useful hypotheses about the molecular mechanism leading to the realization of a certain phenotype

    Topological peculiarities of mammalian networks with different functionalities: transcription, signal transduction and metabolic networks

    Get PDF
    We have comparatively investigated three different mammalian networks - on transcription, signal transduction and metabolic processes - with respect to their common and individual topological traits. The networks have been constructed based on genome- wide data collected from human, mouse and rat. None of these three networks exhibits a pure power-law degree distribution and, therefore, could be considered scalefree. Rather, the degree distributions of all three networks were best fitted by mixed models of a power law with an exponential tail. The networks differ from one another in the quantitative parameters of the models. Moreover, the transcription network can also be very well approximated by an exponential law. The connectivity within each network is rather robust, as is seen when removing individual nodes and computing the values of their pairwise disconnectivity index (PDI), which characterizes the topological significance of each node v by the number of direct or indirect connections in the network that critically depend on the presence of v. The results evidence that the networks are not centralized: none of nodes globally controls the integrity of each network. Just a few vertices appeared to strongly affect the coherence of the networks. These nodes are characterized by a broad range of degrees, thereby indicating that the degree alone is not the decisive criteria of a node's importance. The networks reveal distinct architectures: The transcriptional network exhibits a hierarchical modularity, whereas the signaling network is mainly comprised of semi-autonomous modules. The metabolic network seems to be made by a more complex mixture of substructures. Thus, despite being encoded by the same genomes, the networks significantly differ from one another in their general architectural design. Altogether, our results indicate that the subsets of genes and relationships that constitute these networks have co-evolved very differently and through multiple mechanisms

    Regulatory coordination of clustered microRNAs based on microRNA-transcription factor regulatory network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNA (miRNA) is a class of small RNAs of ~22nt which play essential roles in many crucial biological processes and numerous human diseases at post-transcriptional level of gene expression. It has been revealed that miRNA genes tend to be clustered, and the miRNAs organized into one cluster are usually transcribed coordinately. This implies a coordinated regulation mode exerted by clustered miRNAs. However, how the clustered miRNAs coordinate their regulations on large scale gene expression is still unclear.</p> <p>Results</p> <p>We constructed the miRNA-transcription factor regulatory network that contains the interactions between transcription factors (TFs), miRNAs and non-TF protein-coding genes, and made a genome-wide study on the regulatory coordination of clustered miRNAs. We found that there are two types of miRNA clusters, i.e. homo-clusters that contain miRNAs of the same family and hetero-clusters that contain miRNAs of various families. In general, the homo-clustered as well as the hetero-clustered miRNAs both exhibit coordinated regulation since the miRNAs belonging to one cluster tend to be involved in the same network module, which performs a relatively isolated biological function. However, the homo-clustered miRNAs show a direct regulatory coordination that is realized by one-step regulation (i.e. the direct regulation of the coordinated targets), whereas the hetero-clustered miRNAs show an indirect regulatory coordination that is realized by a regulation comprising at least three steps (e.g. the regulation on the coordinated targets by a miRNA through a sequential action of two TFs). The direct and indirect regulation target different categories of genes, the former predominantly regulating genes involved in emergent responses, the latter targeting genes that imply long-term effects.</p> <p>Conclusion</p> <p>The genomic clustering of miRNAs is closely related to the coordinated regulation in the gene regulatory network. The pattern of regulatory coordination is dependent on the composition of the miRNA cluster. The homo-clustered miRNAs mainly coordinate their regulation rapidly, while the hetero-clustered miRNAs exert control with a delay. The diverse pattern of regulatory coordination suggests distinct roles of the homo-clustered and the hetero-clustered miRNAs in biological processes.</p

    EndoNet: an information resource about endocrine networks

    Get PDF
    EndoNet is a new database that provides information about the components of endocrine networks and their relations. It focuses on the endocrine cell-to-cell communication and enables the analysis of intercellular regulatory pathways in humans. In the EndoNet data model, two classes of components span a bipartite directed graph. One class represents the hormones (in the broadest sense) secreted by defined donor cells. The other class consists of the acceptor or target cells expressing the corresponding hormone receptors. The identity and anatomical environment of cell types, tissues and organs is defined through references to the CYTOMER(®) ontology. With the EndoNet user interface, it is possible to query the database for hormones, receptors or tissues and to combine several items from different search rounds in one complex result set, from which a network can be reconstructed and visualized. For each entity, a detailed characteristics page is available. Some well-established endocrine pathways are offered as showcases in the form of predefined result sets. These sets can be used as a starting point for a more complex query or for obtaining a quick overview. The EndoNet database is accessible at

    TRANSPATH®—A High Quality Database Focused on Signal Transduction

    Get PDF
    TRANSPATH® can either be used as an encyclopedia, for both specific and general information on signal transduction, or can serve as a network analyser. Therefore, three modules have been created: the first one is the data, which have been manually extracted, mostly from the primary literature; the second is PathwayBuilder™, which provides several different types of network visualization and hence faciliates understanding; the third is ArrayAnalyzer™, which is particularly suited to gene expression array interpretation, and is able to identify key molecules within signalling networks (potential drug targets). These key molecules could be responsible for the coordinated regulation of downstream events. Manual data extraction focuses on direct reactions between signalling molecules and the experimental evidence for them, including species of genes/proteins used in individual experiments, experimental systems, materials and methods. This combination of materials and methods is used in TRANSPATH® to assign a quality value to each experimentally proven reaction, which reflects the probability that this reaction would happen under physiological conditions. Another important feature in TRANSPATH® is the inclusion of transcription factor–gene relations, which are transferred from TRANSFAC®, a database focused on transcription regulation and transcription factors. Since interactions between molecules are mainly direct, this allows a complete and stepwise pathway reconstruction from ligands to regulated genes. More information is available at www.biobase.de/pages/products/databases.html
    corecore