2,329 research outputs found

    New Precision Orbits Of Bright Double-Lined Spectroscopic Binaries. VIII. HR 1528, HR 6993, 2 Sagittae, And 18 Vulpeculae

    Get PDF
    Improved orbital elements for four A-star double-lined spectroscopic binaries have been determined with numerous new radial velocities. Three of the four systems, HR 1528, 2 Sge, and 18 Vul, have moderately short orbital periods of 7.05, 7.39, and 9.31 days, respectively, and also have circular or nearly circular orbits. Only HR 6993 with a period of 14.68 days has a significantly eccentric orbit. The close visual companion of 2 Sge has been detected spectroscopically, and its velocity measured. The orbital dimensions (a(1) sin i and a(2) sin i) and minimum masses (m(1) sin(3) i and m(2) sin(3) i) of the short-period binary components all have accuracies of 0.5% or better. We determine basic properties of the individual stars and compare them with solar-abundance evolutionary tracks to estimate their masses. Half of the eight components may be synchronously or pseudosynchronously rotating.NASANSFTennessee State UniversityState of Tennessee through its Centers of ExcellenceAstronom

    The Spectroscopic Orbits of Five Solar Type, Single Lined Binaries

    Full text link
    We have determined spectroscopic orbits for five single-lined spectroscopic binaries, HD 100167, HD 135991, HD 140667, HD 158222, HD 217924. Their periods range from 60.6 to 2403 days and the eccentricities, from 0.20 to 0.84. Our spectral classes for the stars confirm that they are of solar type, F9 to G5, and all are dwarfs. Their [Fe/H] abundances, determined spectroscopically, are close to the solar value and on average are 0.12 greater than abundances from a photometric calibration. Four of the five stars are rotating faster than their predicted pseudosynchronous rotational velocities.Comment: 12 pages emulateap

    Stellar Activity and its Implications for Exoplanet Detection on GJ 176

    Full text link
    We present an in-depth analysis of stellar activity and its effects on radial velocity (RV) for the M2 dwarf GJ 176 based on spectra taken over 10 years from the High Resolution Spectrograph on the Hobby-Eberly Telescope. These data are supplemented with spectra from previous observations with the HIRES and HARPS spectrographs, and V- and R-band photometry taken over 6 years at the Dyer and Fairborn observatories. Previous studies of GJ 176 revealed a super-Earth exoplanet in an 8.8-day orbit. However, the velocities of this star are also known to be contaminated by activity, particularly at the 39-day stellar rotation period. We have examined the magnetic activity of GJ 176 using the sodium I D lines, which have been shown to be a sensitive activity tracer in cool stars. In addition to rotational modulation, we see evidence of a long-term trend in our Na I D index, which may be part of a long-period activity cycle. The sodium index is well correlated with our RVs, and we show that this activity trend drives a corresponding slope in RV. Interestingly, the rotation signal remains in phase in photometry, but not in the spectral activity indicators. We interpret this phenomenon as the result of one or more large spot complexes or active regions which dominate the photometric variability, while the spectral indices are driven by the overall magnetic activity across the stellar surface. In light of these results, we discuss the potential for correcting activity signals in the RVs of M dwarfs.Comment: Accepted for publication in Ap

    Objective measurement of cough frequency during COPD exacerbation convalescence

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Cough and sputum production are associated with adverse outcomes in COPD and are common during COPD exacerbation (AE-COPD). This study of objective cough monitoring using the Hull Automated Cough Counter and Leicester Cough Monitor software confirms that this system has the ability to detect a significant decrease in cough frequency during AE-COPD convalescence. The ability to detect clinically meaningful change indicates a potential role in home monitoring of COPD patients

    In order to increase competition in U.S. House races, states should look to extra-legislative bodies to redraw congressional boundaries

    Get PDF
    Politicians and pundits alike regularly bemoan the lack of electoral competition in congressional races as incumbent reelection rates frequently soar to over 90 percent. Redistricting and gerrymandering are often blamed as a way to lock members into their seats for at least a decade. Jamie L. Carson, Michael H. Crespin and Ryan D. Williamson ask if there are ways to inject more competition into elections during the mandated redistricting cycles. Based on an analysis of redistricting cycles from 1972 to 2012, they show that commission and court-drawn districts experience marginally more competition than those drawn by state legislatures. These results provide additional support for the argument that one way to increase the competitiveness of congressional elections is to allow extra-legislative bodies to draw congressional district boundaries

    Nine Bright γ Doradus Variables Discovered with Ground-based Photometry

    Get PDF
    We have used precise photometric and high-dispersion spectroscopic observations to study nine candidate γ Doradus (γ Dor) stars, identified as optically variable comparison stars in our photometric studies of Sun-like stars. In this paper, we confirm these nine candidates as new γ Dor variables. All exhibit sinusoidal variability with amplitudes between 6 and 65 mmag in Johnson B and periods from 0.28 to 1.13 days. All lie in the same region of the H-R diagram as our previously confirmed γ Dor stars. Of the nine systems, one is a single-lined spectroscopic binary (SB1), two are double-lined spectroscopic binaries (SB2), and the remaining six are single stars. We present orbits for the three binary systems: HD 34415, HD 144839, and HD 182735. Their periods are 6400 days or 17.5 yr (adopted), 995 ± 7 days, and 1052.4 ± 0.2 days, respectively. We compare our photometric periods with those we derive for six of the nine stars observed with the Transiting Exoplanet Survey Satellite to strengthen the confirmation of these new γ Dor variables. Finally, because the distribution of γ Dor stars in the H-R diagram overlaps with the red edge of the δ Scuti (δ Sct) instability strip, we use our ground-based photometric results for the 73 γ Dor stars confirmed with our Automatic Photoelectric Telescopes over the past two decades to look at the incidence of hybrid δ Sct/γ Dor stars; these are highly valuable targets for asteroseismology

    Planetary systems around close binary stars: the case of the very dusty, Sun-like, spectroscopic binary BD+20 307

    Get PDF
    Field star BD+20 307 is the dustiest known main sequence star, based on the fraction of its bolometric luminosity, 4%, that is emitted at infrared wavelengths. The particles that carry this large IR luminosity are unusually warm, comparable to the temperature of the zodiacal dust in the solar system, and their existence is likely to be a consequence of a fairly recent collision of large objects such as planets or planetary embryos. Thus, the age of BD+20 307 is potentially of interest in constraining the era of terrestrial planet formation. The present project was initiated with an attempt to derive this age using the Chandra X-ray Observatory to measure the X-ray flux of BD+20 307 in conjunction with extensive photometric and spectroscopic monitoring observations from Fairborn Observatory. However, the recent realization that BD+20 307 is a short period, double-line, spectroscopic binary whose components have very different lithium abundances, vitiates standard methods of age determination. We find the system to be metal-poor; this, combined with its measured lithium abundances, indicates that BD+20 307 may be several to many Gyr old. BD+20 307 affords astronomy a rare peek into a mature planetary system in orbit around a close binary star (because such systems are not amenable to study by the precision radial velocity technique).Comment: accepted for ApJ, December 10, 200

    Continuous cough monitoring using ambient sound recording during convalescence from a COPD exacerbation

    Get PDF
    Purpose Cough is common in chronic obstructive pulmonary disease (COPD) and is associated with frequent exacerbations and increased mortality. Cough increases during acute exacerbations (AE-COPD), representing a possible metric of clinical deterioration. Conventional cough monitors accurately report cough counts over short time periods. We describe a novel monitoring system which we used to record cough continuously for up to 45 days during AE-COPD convalescence. Methods This is a longitudinal, observational study of cough monitoring in AE-COPD patients discharged from a single teaching-hospital. Ambient sound was recorded from two sites in the domestic environment and analysed using novel cough classifier software. For comparison, the validated hybrid HACC/LCM cough monitoring system was used on days 1, 5, 20 and 45. Patients were asked to record symptoms daily using diaries. Results Cough monitoring data were available for 16 subjects with a total of 568 monitored days. Daily cough count fell significantly from mean±SEM 272.7±54.5 on day 1 to 110.9±26.3 on day 9 (p<0.01) before plateauing. The absolute cough count detected by the continuous monitoring system was significantly lower than detected by the hybrid HACC/LCM system but normalised counts strongly correlated (r=0.88, p<0.01) demonstrating an ability to detect trends. Objective cough count and subjective cough scores modestly correlated (r=0.46). Conclusions Cough frequency declines significantly following AE-COPD and the reducing trend can be detected using continuous ambient sound recording and novel cough classifier software. Objective measurement of cough frequency has the potential to enhance our ability to monitor the clinical state in patients with COPD

    A connectivity portfolio effect stabilizes marine reserve performance

    Get PDF
    Well-managed and enforced no-take marine reserves generate important larval subsidies to neighboring habitats and thereby con-tribute to the long-term sustainability of fisheries. However, larval dispersal patterns are variable, which leads to temporal fluctua-tions in the contribution of a single reserve to the replenishment of local populations. Identifying management strategies that mit-igate the uncertainty in larval supply will help ensure the stability of recruitment dynamics and minimize the volatility in fishery catches. Here, we use genetic parentage analysis to show extreme variability in both the dispersal patterns and recruitment contribu-tion of four individual marine reserves across six discrete recruit-ment cohorts for coral grouper (Plectropomus maculatus) on the Great Barrier Reef. Together, however, the asynchronous contri-butions from multiple reserves create temporal stability in recruit-ment via a connectivity portfolio effect. This dampening effect reduces the variability in larval supply from individual reserves by a factor of 1.8, which effectively halves the uncertainty in the recruitment contribution of individual reserves. Thus, not only does the network of four marine reserves generate valuable larval subsidies to neighboring habitats, the aggregate effect of individual reserves mitigates temporal fluctuations in dispersal patterns and the replenishment of local populations. Our results indicate that small networks of marine reserves yield previously unrecog-nized stabilizing benefits that ensure a consistent larval supply to replenish exploited fish stocks
    corecore